AQA Maths Mechanics 3

 Mark Scheme Pack$$
2006-2015
$$

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Jor ft or F	follow through from previous incorrect result	
	correct answer only	MC

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03

Q	Solution	Marks	Total	Comments
1(a)(i) (ii)	$\mathrm{T}^{1}=\mathrm{L}^{a} \times \mathrm{M}^{b} \times\left(\mathrm{LT}^{-2}\right)^{c}$ There is no M on the left, so $b=0$ $\begin{aligned} & \mathrm{T}^{1}=\mathrm{L}^{a+c} \times \mathrm{M}^{0} \times \mathrm{T}^{-2} \\ & \left\{\begin{array}{l} -2 c=1 \\ a+c=0 \end{array}\right. \\ & a=\frac{1}{2}, c=-\frac{1}{2} \\ & \therefore \text { Period }=k l^{\frac{1}{2}} g^{-\frac{1}{2}} \end{aligned}$	M1A1 E1 M1 m1 m1 A1F	4	equating corresponding indices solution constant needed
	Total		7	
2(a)	conservation of momentum $\begin{aligned} & m u=m v_{A}+m v_{B} \\ & u=v_{A}+v_{B} \end{aligned}$ restitution $\begin{aligned} & e u=v_{B}-v_{A} \\ & v_{B}=\frac{1}{2} u(1+e) \end{aligned}$ $\begin{aligned} & m v_{B}=m w_{B}+2 m \frac{3 u}{8} \\ & e v_{B}=\frac{3 u}{8}-w_{B} \end{aligned}$ Elimination of w_{B} $\begin{aligned} & 4 e^{2}+8 e-5=0 \\ & e=\frac{1}{2} \end{aligned}$	M1 A1 M1A1 A1F M1A1 M1A1 m1 A1F A1F	7	OE OE OE dependent on both M1s simplified quadratic equation in e only stated as the only value ($0<e<1$ for follow through)
	Total		12	

MM03 (cont)

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
5(a)	$y=-\frac{1}{-g t^{2}+20 \sin 30 . t}$	M1A1		
	$x=20 \cos 30 . t$	M1		
	t x			
	$t=\frac{\lambda}{20 \cos 30}$	A1		
	$y=-\frac{1}{2} g \frac{x^{2}}{400 \cos ^{2} 30}+20 \sin 30 \frac{x}{20 \cos 30}$	M1		
	$y=x \tan 30-\frac{g x^{2}}{800 \cos ^{2} 30^{\circ}}$	A1	6	AG
(b)	$2.5=x \tan 30-\frac{9.8 x^{2}}{800 \cos ^{2} 30}$			
	$9.8 x^{2}-346 x+1500=0$	M1A1		substituting and tidying up
	346 $\pm \sqrt{119716-58800}$			
	$x=\frac{19.6}{19}$	M1		
	$\begin{aligned} & =30.3 \text { (or } 30.2 \text {) \& } 5.06 \text { (or } 5.05 \text {) } \\ & \text { answer: } 30.3 \mathrm{~m} \text { (or } 30.2 \mathrm{~m} \text {) } \end{aligned}$	A1F	4	at least 3 s.f. required
(c)	no air resistance,	B1		
	the ball is a particle	B1	2	
	Total		12	

MM03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Components of			
	conservation of linear momentum along the line of centres: $\begin{aligned} & m \times 8 \cos 30+m \times 4 \cos 60=m v_{A}+m v_{B} \\ & v_{A}+v_{B}=8.93 \end{aligned}$	M1A1		OE unsimplified
	Law of restitution along the line of centre: $\begin{aligned} & \frac{v_{B}-v_{A}}{8 \cos 30-4 \cos 60}=\frac{1}{2} \\ & v_{B}-v_{A}=2.46 \end{aligned}$	M1A1		OE unsimplified
	$v_{B}=5.70$	m1		dependent on both M1s
		A1F		AWRT (or $3 \sqrt{3}+\frac{1}{2}$)
	momentum of B perpendicular to the line of centres is unchanged Speed of $B=\sqrt{u_{B}{ }^{2}+v_{B}{ }^{2}}$	B1		PI (can also be gained in part (b))
	$\begin{aligned} & =\sqrt{(4 \sin 60)^{2}+(5.70)^{2}} \\ & =6.67 \end{aligned}$	$\begin{gathered} \mathrm{m} 1 \\ \mathrm{~A} 1 \mathrm{~F} \end{gathered}$	9	dependent on both M1s
(b)	direction of $B=\tan ^{-1} \frac{4 \sin 60}{5.70}=31.3^{\circ}$	$\begin{gathered} \mathrm{m} 1 \\ \mathrm{~A} 1 \mathrm{~F} \\ \hline \end{gathered}$	2	dependent on both M1s and B1
	Total		11	

MM03 (cont)

Q	Solution	Marks	Total	Comments
7(a)(i)	the projectile hits the plane again when $\begin{aligned} & \left(U t \sin \theta-\frac{1}{2} g t^{2} \cos \alpha\right)=0 \\ & \therefore t=\frac{2 U \sin \theta}{g \cos \alpha} \end{aligned}$	M1A1 A1F	3	need to be simplified
(ii)	the component of velocity perpendicular to plane $=$ $U \sin \theta-g \frac{2 U \sin \theta}{g \cos \alpha} \cos \alpha=$ $-U \sin \theta=$ the initial magnitude	M1A1F A1	3	AG
(b)	Newton's law of restitution perpendicular to plane: $\begin{aligned} & u=e U \sin \theta \\ & a=-g \cos \alpha \\ & s=0 \end{aligned}$	M1		
	$\begin{aligned} & 0=e U \sin \theta \cdot T-\frac{1}{2} g \cos \alpha \cdot T^{2} \\ & T=\frac{2 e U \sin \theta}{g \cos \alpha}=e t \\ & t: T=1: e \end{aligned}$	M1 A1 A1F	4	
	Total		10	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MM03

Mechanics 3

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	$\begin{aligned} & \mathrm{MLT}^{-2}=\frac{[G] \mathrm{MM}}{\mathrm{~L}^{2}} \\ & {[G]=\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2}} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1 } \\ \text { A1F } \end{gathered}$	3	
(b)	$\begin{aligned} & t=k m^{\alpha} R^{\beta} G^{\gamma} \\ & \mathrm{T}=\mathrm{M}^{\alpha} \mathrm{L}^{\beta} \mathrm{M}^{-\gamma} \mathrm{L}^{3 \gamma} \mathrm{~T}^{-2 \gamma} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		$\mathrm{L}, \mathrm{M}, \mathrm{T}$ for G are needed to gain M1
	$\begin{aligned} & -2 \gamma=1 \Rightarrow \gamma=-\frac{1}{2} \\ & \alpha-\gamma=0 \Rightarrow \alpha=-\frac{1}{2} \\ & \beta+3 \gamma=0 \Rightarrow \beta=\frac{3}{2} \end{aligned}$	m1 m1 A1F	5	Getting 3 equations Solution Finding α, β, γ
	Total		8	

MM03 (cont)

Q	Solution	Marks	Total	Comments
2 (a)	$\begin{aligned} { }_{B} \mathbf{v}_{A} & =\mathbf{v}_{A}-\mathbf{v}_{B} \\ & =(20 \mathbf{i}-10 \mathbf{j}+20 \mathbf{k})-(30 \mathbf{i}+10 \mathbf{j}+10 \mathbf{k}) \\ & =-10 \mathbf{i}-20 \mathbf{j}+10 \mathbf{k} \end{aligned}$	M1A1	2	Simplification not necessary
(b)	$\begin{aligned} { }_{B} \mathbf{r}_{0 A}=(8000 \mathbf{i}+ & 1500 \mathbf{j}+3000 \mathbf{k}) \\ & -(2000 \mathbf{i}+500 \mathbf{j}+1000 \mathbf{k}) \end{aligned}$	M1		
	$\begin{aligned} &{ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}}=(6000 \mathbf{i}+1000 \mathbf{j}+2000 \mathbf{k}) \\ &+(-10 \mathbf{i}-20 \mathbf{j}+10 \mathbf{k}) t \\ &{ }_{\mathrm{B}} \mathbf{r}_{\mathrm{A}}=(6000-10 t) \mathbf{i}+(1000-20 t) \mathbf{j} \\ &+(2000+10 t) \mathbf{k} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	3	Simplification not necessary
(c)	$\begin{aligned} \left\|\mathbf{B}_{A}\right\|^{2}=(6000-10 t)^{2}+ & (1000-20 t)^{2} \\ & +(2000+10 t)^{2} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		
	The helicopters are closest when $\left\|{ }_{B} \mathbf{r}_{A}\right\|^{2}$ is minimum. $\begin{aligned} & y=(6000-10 t)^{2}+(1000-20 t)^{2} \\ & +(2000+10 t)^{2} \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=2(-10)(6000-10 t) \\ & +2(-20)(1000-20 t) \\ & +2(10)(2000+10 t)=0 \end{aligned}$	$\begin{gathered} \mathrm{ml} \\ \mathrm{AlF} \end{gathered}$		
	$t=100$ Alternative: $\left(\begin{array}{l} 6000-10 t \\ 1000-20 t \\ 2000+10 t \end{array}\right) \cdot\left(\begin{array}{r} -10 \\ -20 \\ 10 \end{array}\right)=0$	A1F (M1) (A1F)	5	
	$\begin{aligned} -60000+100 t- & 20000+400 t \\ & +20000+100 t=0 \end{aligned}$	$\begin{gathered} (\mathrm{m} 1) \\ (\mathrm{A} 1 \mathrm{~F}) \end{gathered}$		
	$\begin{aligned} & 600 t=60000 \\ & t=100 \end{aligned}$	(A1F)	(5)	
	Total		10	

MM03 (cont)

MM03 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 5(a) \& $$
y=u t \sin \alpha-\frac{1}{2} g t^{2}
$$ \& $$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& \&

\hline \& $x=u t \cos \alpha$ \& M1 \& \&

\hline \& $$
t=\frac{x}{u \cos \alpha}
$$ \& A1 \& \&

\hline \& $$
\begin{aligned}
& y=u\left(\frac{x}{u \cos \alpha}\right) \sin \alpha-\frac{1}{2} g\left(\frac{x}{u \cos \alpha}\right)^{2} \\
& y=x \tan \alpha-\frac{g x^{2}}{u^{2} \cos ^{2} \alpha} \\
& y=x \tan \alpha-\frac{g x^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right)
\end{aligned}
$$ \& M1

A1 \& 6 \& Answer given

\hline (b)(i) \& \[
$$
\begin{aligned}
& 1=R \tan \alpha-\frac{10 R^{2}}{2 u^{2}}\left(1+\tan ^{2} \alpha\right) \\
& 5 R^{2} \tan ^{2} \alpha-u^{2} R \tan \alpha+5 R^{2}+u^{2}=0
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& 2 \& Answer given

\hline (ii) \& For real solutions of the quadratic :

\[
$$
\begin{aligned}
& u^{4} R^{2}-20 R^{2}\left(5 R^{2}+u^{2}\right) \geq 0 \\
& R^{2} \leq \frac{u^{4}-20 u^{2}}{100} \\
& R^{2} \leq \frac{u^{2}\left(u^{2}-20\right)}{100}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& 2 \& Answer given

\hline (iii) \& \[
$$
\begin{aligned}
& 5^{2} \leq \frac{u^{2}\left(u^{2}-20\right)}{100} \\
& u^{4}-20 u^{2}-2500 \geq 0 \\
& u_{\text {min }}{ }^{2}=61.0 \quad(\text { or } 10+\sqrt{2600}) \\
& u_{\text {min }}=7.81
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1F | \& 3 \& | Condone equation |
| :--- |
| 3 sf required |

\hline \& Total \& \& 13 \&

\hline
\end{tabular}

MM03 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 6(a) \& \begin{tabular}{l}
Before: \\
After: \\
Con. of Mom. along the line of centres: \(m u \cos 30^{\circ}=m v_{A}+m v_{B}\)
\[
\begin{equation*}
v_{A}+v_{B}=\frac{\sqrt{3}}{2} u \tag{1}
\end{equation*}
\] \\
Newton's experimental law :
\[
\begin{align*}
\& e=\frac{v_{B}-v_{A}}{u \cos 30^{\circ}-0} \\
\& v_{B}-v_{A}=\frac{\sqrt{3}}{2} u e \tag{2}
\end{align*}
\] \\
Solving (1) and (2) :
\[
\begin{aligned}
\& v_{B}=\frac{\sqrt{3}}{4} u(1+e) \\
\& \perp \quad u \sin 30^{\circ}=\frac{1}{2} u \\
\& \| \quad v_{A}=\frac{\sqrt{3}}{2} u-\frac{\sqrt{3}}{4} u(1+e) \\
\& v_{A}=\frac{\sqrt{3}}{4} u(1-e) \\
\& \alpha=\tan ^{-1} \frac{\frac{1}{2}}{\frac{\sqrt{3}}{4}} u\left(1-\frac{2}{3}\right) \\
\& \alpha=\tan ^{-1} \frac{6}{\sqrt{3}} \\
\& \alpha=74^{\circ}
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1F \\
M1 \\
A1F \\
A1F
\end{tabular} \& 5
3
3

3 \& | Answer given |
| :--- |
| $u \sin 30$ accepted |
| Simplification not needed |
| To the nearest degree required |

\hline \& Total \& \& 11 \&

\hline
\end{tabular}

MM03 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 7(a) \& \begin{tabular}{l}
\[
\begin{aligned}
\& y=u t \sin \theta-\frac{1}{2} g t^{2} \cos \theta \\
\& y=0 \quad \Rightarrow \quad t=\frac{2 u \sin \theta}{g \cos \alpha} \\
\& x=u t \cos \theta-\frac{1}{2} g t^{2} \sin \alpha \\
\& R=u \frac{2 u \sin \theta}{g \cos \alpha} \cos \theta-\frac{1}{2} g\left(\frac{2 u \sin \theta}{g \cos \alpha}\right)^{2} \sin \alpha \\
\& R=\frac{2 u^{2} \sin \theta \cos (\theta+\alpha)}{g \cos ^{2} \alpha} \\
\& R=\frac{2 u^{2} \times \frac{1}{2}[\sin (2 \theta+\alpha)+\sin (-\alpha)]}{g \cos ^{2} \alpha}
\end{aligned}
\] \\
R is maximum when \(\sin (2 \theta+\alpha)=1\)
\[
\begin{aligned}
\& \text { or } 2 \theta+\alpha=\frac{\pi}{2} \\
\& \therefore \quad \theta=\frac{\pi}{4}-\frac{\alpha}{2} \\
\& y=0 \Rightarrow t=\frac{2 u \sin \theta}{g \cos \alpha} \\
\& \dot{x}=0 \Rightarrow t=\frac{u \cos \theta}{g \sin \alpha} \\
\& \frac{2 u \sin \theta}{g \cos \alpha}=\frac{u \cos \theta}{g \sin \alpha} \\
\& 2 \tan \theta=\cot \alpha
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1A1 \\
A1F \\
M1A1 \\
M1 \\
m1 \\
A1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A2,1 \\
A1
\end{tabular} \& 8

3

4 \& | Dependent on M1s |
| :--- |
| Answer given |
| Answer given |
| For using $y=0$ and $\dot{x}=0$ |
| A2 for both correct |
| Answer given |
| N.B. A problem arose which ultimately affected the marking of part 7(c). |
| Please see the Report on the Examination for details. |

\hline \& Total \& \& 15 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

[^1]
Key to mark scheme and abbreviations used in marking

$\left.\begin{array}{llll}\hline \text { M } & \text { mark is for method } & \\ \hline \text { m or dM } & \text { mark is dependent on one or more M marks and is for method } \\ \hline \text { A } & \text { mark is dependent on } \mathrm{M} \text { or } m \text { marks and is for accuracy }\end{array}\right]$

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03

MM03 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3 \& \[
\begin{aligned}
\& \int_{0}^{t} 5 \times 10^{3} t^{2} \mathrm{~d} t=0.2(2)-0.2(0) \\
\& \frac{5 \times 10^{3}}{3} t^{3}=0.4 \\
\& t=0.0621
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
A1F \\
A1F
\end{tabular} \& 4 \& \begin{tabular}{l}
Impulse-Momentum principle \\
At least 3 sig. fig. required
\end{tabular} \\
\hline \& Total \& \& 4 \& \\
\hline \begin{tabular}{l}
4(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
C.L.M.
\[
\begin{aligned}
\& m(4 \mathbf{i}+3 \mathbf{j})+2 m(-2 \mathbf{i}+2 \mathbf{j})=m v+2 m(\mathbf{i}+\mathbf{j}) \\
\& 7 \mathbf{j}=v+(2 \mathbf{i}+2 \mathbf{j}) \\
\& v=-2 \mathbf{i}+5 \mathbf{j}
\end{aligned}
\] \\
The angle with \(\mathbf{j}\) direction : \\
A: \(\tan ^{-1} \frac{2}{5}=21.8^{\circ}\) \\
B: \(\quad \tan ^{-1} \frac{1}{1}=45^{\circ}\) \\
The angle \(=21.8^{\circ}+45^{\circ}=67^{\circ}\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A2,1,0 \\
M1 \\
A1F
\end{tabular} \& 3

3 \& | A1 for one slip |
| :--- |
| OE. in i direction |
| M1 for two inverse tan and addition of angles |
| AWRT. |
| Alternative (not in the specification) $\begin{align*} & (-2 \mathbf{i}+5 \mathbf{j}) \cdot(\mathbf{i}+\mathbf{j})=\sqrt{29} \times \sqrt{2} \cos \theta \\ & \cos \theta=\frac{3}{\sqrt{58}} \tag{A1}\\ & \theta=67^{\circ} \end{align*}$ |

\hline (c) \& $$
\begin{aligned}
& \text { The impulse }=\text { Gain in momentum of } A \\
& =m(-2 \mathbf{i}+5 \mathbf{j})-m(4 \mathbf{i}+\mathbf{j} \mathbf{j}) \\
& =-6 m \mathbf{i}+2 m \mathbf{j}
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1F } \\
\text { A1F }
\end{gathered}
$$
\] \& 3 \&

\hline (d) \& \& B1 \& 1 \&

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
6(a)	Parallel to the wall : velocity is unchanged $u \cos \alpha=v \sin \alpha$ Perpendicular to the wall : Law of Restitution $\frac{v \cos \alpha}{u \sin \alpha}=\frac{3}{4}$ $\frac{v \cos \alpha}{v \tan \alpha \sin \alpha}=\frac{3}{4}$ $\frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}=\frac{3}{4}$ $\tan ^{2} \alpha=\frac{4}{3}$ $\tan \alpha=\frac{2}{\sqrt{3}}$ $\begin{aligned} & v=\frac{u}{\tan \alpha} \\ & v=\frac{\sqrt{3}}{2} u \text { or } 0.866 u \end{aligned}$ Magnitude of Impulse = Change in momentum perpendicular to the wall $\begin{aligned} & =0.2 \times v \cos \alpha-(-0.2 \times 4 \sin \alpha) \\ & =0.2 \times \frac{\sqrt{3}}{2} \times 4 \cos \alpha+0.2 \times 4 \sin \alpha \\ & =1.06 \mathrm{Ns} \end{aligned}$ Average Force $=\frac{1.06}{0.1}=10.6 \mathrm{~N}$	M1 M1 $m 1$ $m 1$ A1 M1 A1 M1 A1 A1 m1 A1F A1F	5 2 6	Dependent on both M1s Dependent on both M1s Answer given
	Total		13	

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
7(a)	ALTERNATIVE			
	$0=u \sin \theta-\operatorname{gcos} a t$	M1		
	$t=\frac{u \sin \theta}{\operatorname{gcos} a}$	A1		
	$y_{\max }=u \sin \theta\left(\frac{u \sin \theta}{\operatorname{gcos} a}\right)-\frac{1}{2} g \cos a\left(\frac{u \sin \theta}{\operatorname{gcos} a}\right)^{2}$	m1		
	$y_{\max }=\frac{u^{2} \sin ^{2} \theta}{2 g \cos a}$	A1F	4	

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method		
m or dM	mark is dependent on one or more M marks and is for method		
A	mark is dependent on M or m marks and is for accuracy		
B	mark is independent of M or m marks and is for method and accuracy		
E	mark is for explanation		
\checkmark or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
$-x$ EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 1 \& \[
\begin{aligned}
\& L=M^{\alpha}\left(L T^{-1}\right)^{\beta}\left(L T^{-2}\right)^{\gamma} \\
\& \beta+\gamma=1 \\
\& -\beta-2 \gamma=0 \\
\& \alpha=0 \\
\& \gamma=-1 \\
\& \beta=2
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
m1 \\
m1 \\
A1F
\end{tabular} \& 5 \& \begin{tabular}{l}
Getting three equations \\
Solution
\end{tabular} \\
\hline \& Total \& \& 5 \& \\
\hline \begin{tabular}{l}
2(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& x=2 t \\
\& y=-\frac{1}{2} g t^{2}+10 t \\
\& t=\frac{x}{2} \\
\& y=-\frac{1}{2} g\left(\frac{x}{2}\right)^{2}+10\left(\frac{x}{2}\right) \\
\& y=-\frac{g}{8} x^{2}+5 x \\
\& 1=-\frac{g}{8} x^{2}+5 x \\
\& g x^{2}-40 x+8=0 \\
\& x=\frac{40 \pm \sqrt{(-40)^{2}-4 \times 8 g}}{2 g} \\
\& x=3.871,0.211 \\
\& \text { Distance }=3.66 \mathrm{~m} \\
\& t=\frac{3.66}{2} \\
\& t=1.83 \mathrm{sec}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
m1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 4

4
4

2 \& | AG |
| :--- |
| A1 for both answers |

\hline \& Total \& \& 10 \&

\hline
\end{tabular}

MM03 (cont)

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
5(a)	Momentum of B perpendicular to the line of centres is unchanged $\begin{aligned} & m_{B} v \sin 40^{\circ}=3 m_{B} \\ & v=4.667 \mathrm{~m} \mathrm{~s}^{-1}=4.67 \mathrm{~ms}^{-1}(3 \mathrm{sf}) \end{aligned}$	$\begin{gathered} \text { M1A1 } \\ \text { A1 } \end{gathered}$	3	AG
(b)	$\begin{aligned} & e=\frac{4.67 \cos 40^{\circ}}{5 \cos 30^{\circ}} \\ & e=0.826 \end{aligned}$	M1A1 A1F	3	
(c)	Impulse on $A=$ change in momentum of A along the line of centres $\begin{aligned} & =0.5 \times 5 \cos 30^{\circ}=2.165 \\ & =2.17 \mathrm{Ns} \end{aligned}$	M1A1 A1	3	AG
(d)	$\begin{aligned} & 2.165=m_{B}(4.667) \cos 40^{\circ} \\ & m_{B}=0.6056=0.606 \mathrm{~kg}(3 \mathrm{sf}) \end{aligned}$	M1A1 A1F	3	Condone use of premature rounding giving 0.605 kg or 0.607 kg
	Total		12	
6(a)	$5 m u+7 m u=m v_{A}+7 m v_{B}$	M1A1		Allow consistent use of positive or negative sign for v_{A}.
	$\begin{aligned} & 12 u=v_{A}+7 v_{B} \\ & e=\frac{-v_{A}+v_{B}}{4 u} \\ & -v_{A}+v_{B}=4 e u \end{aligned}$	M1		
	$8 v_{B}=12 u+4 e u$	m1		
	$v_{B}=\frac{u}{2}(e+3)$	A1	5	AG
(b)	$v_{A}=\frac{u}{2}(e+3)-4 e u$	M1		
	$v_{A}=\frac{u}{2}(3-7 e)$	A1F		
	$\begin{aligned} & \frac{u}{2}(3-7 e)<0 \\ & 3-7 e<0 \end{aligned}$	M1		
	$e>\frac{3}{7}$	A1	4	AG
(c)	$w_{B}=\frac{u}{4}(e+3)$	M1		
	$\begin{aligned} & \frac{u}{2}(7 e-3)<\frac{u}{4}(e+3) \\ & 2(7 e-3)<e+3 \end{aligned}$	M1		
	$13 e<9$	m1		
	$e<\frac{9}{13}$	A1	4	AG
	Total		13	

MM03 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\begin{aligned} & y=10 t \sin 40^{\circ}-\frac{1}{2} g t^{2} \cos 30^{\circ} \\ & y=0 \Rightarrow t=\frac{20 \sin 40^{\circ}}{g \cos 30^{\circ}} \end{aligned}$	M1A1 A1	3	AG
(b)	$\begin{aligned} & \dot{x}=10 \cos 40^{\circ}+g \sin 30^{\circ}\left(\frac{20 \sin 40^{\circ}}{g \cos 30^{\circ}}\right) \\ & \dot{x}=15.08 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1		
	$\begin{aligned} & \dot{y}=10 \sin 40^{\circ}-g \cos 30^{\circ}\left(\frac{20 \sin 40^{\circ}}{g \cos 30^{\circ}}\right) \\ & \dot{y}=-6.427 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1	4	Allow 3 sf
(c)	\dot{x} will be unchanged Rebound $\dot{y}=6.427 \times 0.5=3.214$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$		Allow using 3 sf
	$\text { Rebound speed }=\sqrt{15.08^{2}+3.214^{2}}$	m1		
	$=15.4 \mathrm{~ms}^{-1}$		4	
	Total		11	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics
MM03

Mechanics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03

MM03 (cont)

Q	Solution	Marks	Total	Comments
3(a)	C.L.M. (1) $3 u=(1) v_{A}+(3) v_{B}$ Restitution : $\begin{aligned} & \frac{1}{3} \times 3 u=v_{B}-v_{A} \\ & v_{B}=u \\ & v_{A}=0 \end{aligned}$	M1 A1 M1 A1 m1 A1	6	M1 for three non-zero terms Accept $v_{A}-v_{B}$ Solution A1 for both answers
(b)	C.L.M. $3 u=3 w_{B}+x w_{c}$ Restitution: $\begin{aligned} & \frac{1}{3} u=w_{C}-w_{B} \\ & w_{C}=\frac{4 u}{3+x} \\ & w_{B}=\frac{u(9-x)}{3(3+x)} \end{aligned}$ OE	M1 A1 M1 A1 m1 A1	6	Solution attempt, dep. on both M1s AG A1 for both
(c)	$\begin{aligned} & \text { For further collision } \frac{u(9-x)}{3(3+x)}<0 \\ & 9 u-x u<0 \\ & x>9 \end{aligned}$	M1 A1	2	AG
(d)	$\begin{aligned} & I=5\left(\frac{4 u}{3+5}\right) \\ & I=\frac{5 u}{2} \end{aligned}$ Alternative: $\begin{aligned} & I=3 u-3 \times \frac{u(9-5)}{3(3+5)} \\ & I=\frac{5 u}{2} \end{aligned}$	M1 A1 (M1) (A1F)	2	Accept $-\frac{5 u}{2}$ Follow through on their w_{B}
	Total		16	

MM03 (cont)

MM03 (cont)

Q	Solution	Marks	Total	Comments
$5(a)$ (b)	Parallel to the wall $4 \cos \alpha=v \cos 40^{\circ}$ Perpendicular to the wall $\begin{aligned} & v \sin 40^{\circ}=\frac{2}{3} \times 4 \sin \alpha \\ & \tan \alpha=\frac{3}{2} \tan 40^{\circ} \\ & \alpha=51.5^{\circ} \\ & v=\frac{4 \cos 51.5^{\circ}}{\cos 40^{\circ}} \\ & v=3.25 \mathrm{~ms}^{-1} \end{aligned}$	M1 M1 A1 M1 M1 A1	3 3	Correct trigonometric ratios Correct trigonometric ratios AG OE
	Total		6	
6(a) (b)	The spheres are smooth, no force acting in j direction $\begin{aligned} v_{A} & =a \mathbf{i}+b \mathbf{j} \\ v_{B} & =c \mathbf{i}+d \mathbf{j} \end{aligned}$ C.L.M. along i: $1(2)+2(-1)=1(a)+2(c)$ $a+2 c=0$ Restitution along i : $c-a=0.5(2-(-1))$ $\begin{aligned} & c-a=1.5 \\ & c=0.5 \\ & a=-1 \end{aligned}$ $\begin{aligned} & v_{A}=-\mathbf{i}+3 \mathbf{j} \\ & v_{B}=0.5 \mathbf{i}-2 \mathbf{j} \end{aligned}$	E1 M1A1 M1A1 A1F A1F	1	Any valid reason
	Total		7	

MM03 (cont)

General Certificate of Education (A-level) June 2011

Mathematics

MM03

(Specification 6360)

Mechanics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1 (a)	$\begin{aligned} & \mathrm{I}=0.2(32)+0.2(18) \\ & \mathrm{I}=10 \mathrm{Ns} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Condone +10
(b)	$\begin{gathered} \int_{0}^{0.09} k\left(0.9 t-10 t^{2}\right) \mathrm{d} t=10 \\ k\left[0.45 t^{2}-\frac{10}{3} t^{3}\right]_{0}^{0.09}=10 \\ 1.215 \times 10^{-3} k=10 \\ k=8230 \end{gathered}$	M1 A1F m1 A1F	4	Condone limits Condone limits For substituting 0.09
			6	
2	$\begin{aligned} & \mathrm{T}^{1}=\mathrm{L}^{\alpha}\left(\mathrm{MLT}^{-2}\right)^{\beta}\left(\mathrm{ML}^{-1}\right)^{\gamma} \\ & \alpha+\beta-\gamma=0 \\ & \beta+\gamma=0 \\ & -2 \beta=1 \\ & \beta=-\frac{1}{2} \\ & \gamma=\frac{1}{2} \\ & \alpha=1 \end{aligned}$	M1 A1 m1 m1 A1F	5	Getting three equations Solution
			5	

Q	Solution	Marks	Total	Comments
3 (a)	$x=40 \cos \theta . t$	M1		
	$\begin{aligned} & y=-\frac{1}{2}(10) t^{2}+40 \sin \theta \cdot t \\ & y=-\frac{1}{2}(10)\left(\frac{x}{40 \cos \theta}\right)^{2}+40 \sin \theta \cdot\left(\frac{x}{40 \cos \theta}\right) \\ & y=-\frac{x^{2}}{320 \cos ^{2} \theta}+x \tan \theta \end{aligned}$	M1 A1 m1		Dependent on both M1s
	$\begin{aligned} & 320 y=-x^{2}\left(1+\tan ^{2} \theta\right)+320 x \tan \theta \\ & x^{2} \tan ^{2} \theta-320 x \tan \theta+\left(x^{2}+320 y\right)=0 \end{aligned}$	$\begin{aligned} & \mathrm{m} 1 \\ & \mathrm{~A} 1 \end{aligned}$	6	Answer Given (Condone missing brackets)
(b)(i)	$\begin{aligned} & 150^{2} \tan ^{2} \theta-320(150) \tan \theta+\left(150^{2}+320 \times 8\right)=0 \\ & 1125 \tan ^{2} \theta-2400 \tan \theta+1253=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Correct quadratic
	$\tan \theta=\frac{2400 \pm \sqrt{2400^{2}-4(1125)(1253)}}{2(1125)}$	m1		
	$\tan \theta=1.22,0.912$	A1F		PI
	$\theta=50.7^{\circ}, 42.4^{\circ}$	A1F	5	
(b)(ii)	$\theta=42.4{ }^{\circ}$	B1F		For the smaller angle
	$t=\frac{150}{40 \cos \theta} \text { and } \cos 42.4>\cos 50.7$	E1	2	OE
			13	

Q	Solution	Marks	Total	Comments
4 (a)	$u_{A}=\frac{(-2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k}) 140}{\sqrt{(2)^{2}+(3)^{2}+(6)^{2}}}=-40 \mathbf{i}+60 \mathbf{j}+120 \mathbf{k}$	M1 A1		Simplification not needed
(b)	$u_{B}=\frac{(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) 60}{\sqrt{(2)^{2}+(1)^{2}+(2)^{2}}}=40 \mathbf{i}-20 \mathbf{j}+40 \mathbf{k}$	A1	5	Simplification not needed
	$\begin{aligned} { }_{A} u_{B} & =(-40 \mathbf{i}+60 \mathbf{j}+120 \mathbf{k})-(40 \mathbf{i}-20 \mathbf{j}+40 \mathbf{k}) \\ & =-80 \mathbf{i}+80 \mathbf{j}+80 \mathbf{k} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$		Subtracting B from A
	$\begin{gathered} { }_{A} r_{B}=(4 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})-(-3 \mathbf{i}+6 \mathbf{j}+3 \mathbf{k})+ \\ t(-80 \mathbf{i}+80 \mathbf{j}+80 k) \\ \text { or }(7 \mathbf{i}-8 \mathbf{j})+t(-80 \mathbf{i}+80 \mathbf{j}+80 \mathbf{k}) \end{gathered}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \end{gathered}$	2	A difference of initial p.v. $+t \times{ }_{A} u_{B}$
(c)	${ }_{A} r_{B}=(7-80 t) \mathbf{i}+(-8+80 t) \mathbf{j}+(80 t) \mathbf{k}$	B1F		Differentiation
	$\begin{aligned} & s^{2}=(7-80 t)^{2}+(-8+80 t)^{2}+(80 t)^{2} \\ & 2 s \frac{\mathrm{~d} s}{\mathrm{~d} t}=2(7-80 t)(-80)+2(-8+80 t)(80)+ \\ & 2(80 t)(80)=0 \end{aligned}$	$\begin{aligned} & \text { B1F } \\ & \text { M1 } \\ & \text { A1F } \end{aligned}$		
	$240 t=15$	m1		Solving
	$\begin{aligned} & t=0.0625 \text { or } \frac{1}{16} \\ & s^{2}=(7-80 \times 0.0625)^{2}+(-8+80 \times 0.0625)^{2}+ \end{aligned}$	A1F		
	$(80 \times 0.0625)^{2}$	M1		
	$s=6.16 \mathrm{~km} \quad$ or $\sqrt{38} \mathrm{~km}$	A1F	8	
			15	
	Alternative (Not in the specification) $\begin{aligned} & A \text { and } B \text { are closest } \Rightarrow{ }_{A} \mathrm{r}_{B} \cdot{ }_{A} \mathrm{~V}_{B}=0 \\ & {[(7-80 t) \mathbf{i}+(-8+80 t) \mathbf{j}+(80 t) \mathbf{k}] .} \\ & {[-80 \mathbf{i}+80 \mathbf{j}+80 \mathbf{k}]=0} \\ & -80(7-80 t)+80(-8+80 t)+80(80 t)=0 \\ & 240 t=15 \\ & t=0.0625 \end{aligned}$	B1 M1 A1 A1 M1 A1		

Q	Solution	Marks	Total	Comments
5(a)	$\begin{aligned} & v^{2}=u^{2}+2 a s \\ & v^{2}=0^{2}+2(9.8)(2.5) \\ & v=7 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	
(b)(i)	$\begin{aligned} & \frac{w}{7}=e \\ & w=7 e \end{aligned}$	M1		
	$\begin{array}{ll} 0=7 e t-\frac{9.8}{2} t^{2} & \text { or } \quad(0=7 e-9.8 t) \\ t=\frac{10 e}{7} & \left(t=2 \times \frac{7 e}{9.8}\right) \end{array}$	M1 A1	3	Answer given
(ii)	$\begin{aligned} & w^{\prime}=7 e^{2} \\ & 0=7 e^{2} t^{\prime}-\frac{9.8}{2} t^{\prime 2} \\ & t^{\prime}=\frac{10 e^{2}}{7} \end{aligned}$	B1	1	OE
(c)	$\begin{aligned} & 0^{2}=(7 e)^{2}+2(-9.8) h_{2} \\ & h_{2}=2.5 e^{2} \\ & h_{3}=2.5 e^{2} \\ & 0^{2}=\left(7 e^{2}\right)^{2}+2(-9.8) h_{4} \\ & h_{4}=2.5 e^{4} \\ & h_{5}=2.5 e^{4} \end{aligned}$	M1 A1 A1		Or for correct method to find h_{4}
	$\begin{aligned} \text { Total distance } & =2.5+2\left(2.5 e^{2}\right)+2\left(2.5 e^{4}\right) \\ & =2.5+5 e^{2}+5 e^{4} \end{aligned}$	m1 A1	5	
	Alternative (not in the specification) K.E. after each bounce $=e^{2} \times$ K.E. before the bounce P.E. at max. height after each bounce $=$ $e^{2} \times$ P.E. at max. height before the bounce Height after first bounce $=2.5 e^{2}$ Height after second bounce $=2.5 e^{4}$ $\begin{aligned} \text { Total } & =2.5+2\left(2.5 e^{2}+2\left(2.5 e^{4}\right)\right. \\ & =2.5+5 e^{2}+5 e^{4} \end{aligned}$	(M1) (A1) (A1) (m1) (A1)		
(d)	Motion in vertical line, No air resistance, No energy loss, Instantaneous bounce	B1	1	
			12	

Q	Solution	Marks	Total	Comments
6 (a)	Perpendicular to the plane:			
	$y=-\frac{1}{2} g t^{2} \cos 20+u t \sin 30$	M1		
	$0=-4.9 t^{2} \cos 20+u t \sin 30$	M1		
	$t=0.108589568 u \text { or } \frac{2 u \sin 30}{g \cos 20}$	A1		
	Parallel to the plane: $x=-\frac{1}{2} g t^{2} \sin 20+u t \cos 30$	M1		
	$\begin{aligned} & 200=-4.9(0.108589568 u)^{2} \sin 20+ \\ & u(0.108589568 u) \cos 30 \end{aligned}$	m1		
	$u^{2}=2693$	A1F		
	$u=51.9$ or 51.894	A1F	7	Do not accept $\sqrt{2693}$
(b)	$\dot{y}=-g t \cos 20+u \sin 30=0$	M1		
	$t=2.817899 \text { or } 2.817580214 \text { or } \frac{51.9 \sin 30}{g \cos 20}$	A1F		Accept 3 significant fig.
	The greatest \perp distance $=$ $-\frac{1}{2} 9.8(2.817899)^{2} \cos 20+51.9(2.817899) \sin 30 \text { or }$	m1		
	$\frac{1}{2} 9.8\left(\frac{51.894 \sin 30}{9.8 \cos 20}\right)^{2} \cos 20+51.9\left(\frac{51.894 \sin 30}{9.8 \cos 20}\right) \sin 30$			
	$\begin{aligned} & =36.5622 \mathrm{~m} \text { or } 36.5538 \\ & =36.6 \quad 3 \mathrm{sf} \end{aligned}$	A1F	4	
			11	
6 (a)	Alternative:			
	$x=200 \cos 20$	B1		
	$y=200 \sin 30$	B1		
	$200 \cos 20=u \cos 50 t$	M1		
	$t=\underline{292.4}$	A1		
	u			
	$200 \sin 30=\frac{1}{2}(-9.8)\left(\frac{292.4}{u}\right)^{2}+u \sin 50\left(\frac{292.4}{u}\right)$	M1		
	$u^{2}=2693$	A1		
	$u=51.9$	A1		
(b)	Alternative:			
	$0=(u \sin 30)^{2}-2 g \cos 20 . s$	M1		
	$s=\frac{(51.9 \sin 30)^{2}}{}$			
	$s=\frac{x}{2(9.8) \cos 20}$	m1A1		
	$s=36.6$	A1		

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \multirow[t]{8}{*}{7 (a)} \& Momentum of \(A\) is unchanged \(\perp\) to the line of centres \& \& \& \\
\hline \& \(4 m u \sin 30=4 m v_{A} \sin \alpha\) \& M1 \& \& \\
\hline \& \begin{tabular}{l}
\[
\begin{equation*}
v_{A}=\frac{u}{2 \sin \alpha} \tag{1}
\end{equation*}
\] \\
C.L.M.:
\end{tabular} \& A1 \& \& \\
\hline \& \[
4 m u \cos 30=4 m v_{A} \cos \alpha+3 m v_{B}
\] \& M1A1 \& \& \\
\hline \& \[
\begin{equation*}
2 \sqrt{3} u=4 v_{A} \cos \alpha+3 v_{B} \tag{2}
\end{equation*}
\] \& A1F \& \& OE \\
\hline \& \[
\begin{align*}
\& \frac{v_{B}-v_{A} \cos \alpha}{u \cos 30}=\frac{5}{9} \\
\& v_{B}=v_{A} \cos \alpha+\frac{5 \sqrt{3} u}{18} \tag{3}
\end{align*}
\] \& M1A1

B1 \& \& Or equivalent, could be in part (b)

\hline \& $$
2 \sqrt{3} u=4 \frac{u}{2 \sin \alpha} \cos \alpha+3 \frac{u}{2 \sin \alpha} \cos \alpha+\frac{15 \sqrt{3} u}{18}
$$ \& m1 \& \& Solving (1), (2) and (3) Dependent on three M1s

\hline \& $$
\begin{aligned}
& \frac{7 \sqrt{3}}{6}=\frac{7}{2 \tan \alpha} \\
& \tan \alpha=\sqrt{3} \\
& \alpha=60^{\circ} \text { or } \frac{\pi}{3}
\end{aligned}
$$ \& A1F \& 10 \&

\hline \multirow[t]{3}{*}{(b)} \& Impulse on $B=$ Change in momentum of B along the line of centres

$$
\begin{aligned}
& v_{B}=\frac{u}{2 \sin 60} \cos 60+\frac{5 \sqrt{3} u}{18} \\
& v_{B}=\frac{u}{2 \sqrt{3}}+\frac{5 \sqrt{3} u}{18} \quad\left(=\frac{4 \sqrt{3}}{9}\right)
\end{aligned}
$$ \& M1 \& \&

\hline \& $$
\mathrm{I}=3 m\left(\frac{u}{2 \sqrt{3}}+\frac{5 \sqrt{3} u}{18}\right)-3 m(0)
$$ \& M1 \& \&

\hline \& $$
\mathrm{I}=\frac{4 m u}{\sqrt{3}} \text { or } 2.31 m u
$$ \& A1F \& 3 \&

\hline \& \& \& 13 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

General Certificate of Education (A-level) June 2012

Mathematics

MM03

(Specification 6360)

Mechanics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
ᄀor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0$)$ accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.
Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments

\hline 1(a)

(b) \& \[
$$
\begin{aligned}
& I=\int_{0}^{0.5} 4 \times 10^{4} t^{2}(1-2 t) \mathrm{d} t \\
&=4 \times 10^{4}\left[\frac{1}{3} t^{3}-\frac{1}{2} t^{4}\right]_{0}^{0.5} \\
&=417 \text { (or } \frac{1250}{3} \text {) Ns } \\
& 416 . \dot{6}=60 v+60 \times 5 \\
& v=1.94
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1F |
| A1F |
| M1A1F |
| A1F | \& \[

4
\]

\[
3

\] \& | Attempt to integrate |
| :--- |
| Use of correct limits, PI |
| Correct integration |
| Accept $416 . \dot{6}$ or 416.7 |
| A1F correct sign |
| AWRT 1.94, accept 1.95 ISW |

\hline \& Total \& \& 7 \&

\hline 2 \& | Dimension of g is LT^{-2} |
| :--- |
| Dimension of s is L |
| Dimension of h is L |
| Dimension of m_{1} and m_{2} is M |
| Dimension of $\frac{g}{s}\left[s\left(m_{1}+m_{2}\right)+\frac{h m_{1}{ }^{2}}{m_{1}+m_{2}}\right]$ is $\begin{aligned} \frac{\mathrm{LT}^{-2}}{\mathrm{~L}}\left[\mathrm{LM}+\frac{\mathrm{LM}^{2}}{\mathrm{M}}\right] & \cong \mathrm{MLT}^{-2}+\mathrm{MLT}^{-2} \\ & \cong \mathrm{MLT}^{-2} \end{aligned}$ |
| which is a force | \& | $\{\text { B } 1$ |
| :--- |
| M1 |
| A1 |
| B1 | \& 4 \& | B1 for dimensions of the five quantities |
| :--- |
| Correct substitution of dimensions |

\hline \& Total \& \& 4 \&

\hline
\end{tabular}

MM03

Q	Solution	Marks	Total	Comments
4(a)				
	$\begin{aligned} & \theta=\tan ^{-1} \frac{1.69}{1.2}=54.623^{\circ} \\ & u \cos 60^{\circ}=v \cos 54.623^{\circ} \end{aligned}$	B1 M1		AWRT 55° $v=0.864 u$
	$e u \sin 60^{\circ}=v \sin 54.623^{\circ}$	M1		
	$e=\frac{v \sin 54.623^{\circ}}{\frac{v \cos 54.623^{\circ}}{\cos 60^{\circ}} \times \sin 60^{\circ}}$	m1		OE, dependent on both M1s
	$e=0.813$ or 0.812	A1	5	ISW
(b)	$I=0.15 u \sin 60^{\circ}+0.15 v \sin 54.623^{\circ}$ $u \cos 60^{\circ}$	M1A1		Single angle values needed for A1
	$=0.15 u \sin 60^{\circ}+0.15 \times \frac{u \cos 60^{\circ}}{\cos 54.623^{\circ}} \times \sin 54.623^{\circ}$	m1		
	$=0.236 u$	A1	4	AG (condone 0.2355 or negative result)
(c)	Attempt at considering motion parallel or perpendicular to $A C$	M1		
	$t=\frac{1.2}{u \cos 60^{\circ}}$	M1		
	$t=\frac{12}{5 u} \quad \text { or } \quad \frac{2.4}{u}$	A1	3	OE, No ISW
	Alternative:			
	$C P=\frac{1.2}{\frac{1.2}{\cos 54.623^{\circ}}} \quad(=2.072703844 \mathrm{~m})$	(M1)		
	$t=\frac{\overline{\cos 54.623^{\circ}}}{u \cos 60^{\circ}}$	(M1)		
	$\begin{aligned} & \overline{\cos 54.623^{\circ}} \\ = & \frac{12}{5 u} \quad \text { or } \quad \frac{2.4}{u} \end{aligned}$	(A1)	(3)	(OE), No ISW
(d)	Velocity (momentum) parallel to the cushion is unchanged, or, Restitution only affects motion perpendicular to the cushion	E1	1	Accept 'horizontal component of velocity is unchanged’
	Total		13	

Q	Solution	Marks	Total	Comments	
5(a)	$\begin{aligned} & 0=15 t \sin 30-\frac{1}{2} g \cos 25 t^{2} \\ & t=\frac{15 \sin 30}{\frac{1}{2} g \cos 25} \end{aligned}$	M1A1 M1		Accept wrong angle(s) for M1 but not sin and cos in wrong places	
	$t=1.69 \mathrm{sec} .$	A1F	4	AWRT 1.69	
(b)	\perp to plane $\dot{y}=15 \sin 30-g \cos 25 \times \frac{15 \sin 30}{\frac{1}{2} g \cos 25}$	M1			
	$\dot{y}=-7.5 \mathrm{~ms}^{-1}$	A1F		Or -7.51 , ft from their answer in (a)	
	\|	to plane $\dot{x}=15 \cos 30-g \sin 25 \times \frac{15 \sin 30}{\frac{1}{2} g \cos 25}$	M1		
	$\dot{x}=5.995766$ or $6.00 \mathrm{~ms}^{-1}$	A1F		Accept 5.99	
	Restitution: Rebound $\dot{y}=\frac{2}{3} \times 7.5=5 \mathrm{~ms}^{-1}$	M1		$\text { Or } 5.01$	
	\dot{x} unchanged	B1		PI, dependent on the last M1	
	$\begin{aligned} \text { Speed of rebound } & =\sqrt{5.995766^{2}+5^{2}} \\ & =7.81 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{gathered} \text { m1 } \\ \text { A1F } \end{gathered}$	8	Dependent on the last three M1s	
	Total		12		

MM03

Q	Solution	Marks	Total	Comments
6(a)	$\begin{aligned} & \frac{\sin \theta}{10}=\frac{\sin 115^{\circ}}{18} \\ & \theta=30.2^{\circ} \\ & \text { Bearing }=035^{\circ} \end{aligned}$	B1 M1 A1 A1	4	For any appropriate diagram PI by correct method Accept 034.8°
(b)(i)		B1		For any appropriate diagram PI by correct method
	$\begin{aligned} & { }_{A} v_{B}^{2}=18^{2}+10^{2}-2(18)(10) \cos 65^{\circ} \\ & { }_{A} v_{B}=16.4881 \quad \mathrm{~ms}^{-1} \\ & \frac{\sin 65^{\circ}}{16.4881}=\frac{\sin \theta}{10} \\ & \theta=33.3446^{\circ} \\ & d=12 \times \sin 33.3446^{\circ} \\ & d=6.60 \mathrm{~km} \end{aligned}$	M1 A1 M1 A1F m1 A1F	7	OE OE Dependent on the previous two M1s (AWRT 6.6 km)
(ii)	$\begin{aligned} t=\frac{12 \times \cos 33.3446^{\circ}}{16.4881} & =0.607987 \text { hours } \\ & (=36.5 \mathrm{~min}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1F } \\ & \text { A1F } \end{aligned}$	3	Or 0.608 hours LHS values Correct time
	Total		14	

MM03

Q6 (b)(i) Alternative:

```
\(r_{A}=[(18 \cos 25) \mathbf{i}+(18 \sin 25) \mathbf{j}] t\)
\(r_{B}=[(12 \cos 25) \mathbf{i}+(12 \sin 25) \mathbf{j}]+10 \mathbf{j} t \quad\) M1 for both
\({ }_{A} r_{B}=(-12 \cos 25+18 t \cos 25) \mathbf{i}+(-12 \sin 25+18 t \sin 25-10 t) \mathbf{j}\)
\(\left|{ }_{A} r_{B}\right|^{2}=(-12 \cos 25+18 t \cos 25)^{2}+(-12 \sin 25+18 t \sin 25-10 t)^{2}\)
\(\frac{\left.\left.\mathrm{d}\right|_{A} r_{B}\right|^{2}}{\mathrm{~d} t}=(36 \cos 25)(-12 \cos 25+18 t \cos 25)+(36 \sin 25-20)(-12 \sin 25+18 t \sin 25-10 t)=0\)
\(t=0.608\)
\(d=6.60 \mathrm{~km} \quad\) or 6.6 km
The corresponding marks awarded for finding the closest approach time:
```

$\frac{\left.\left.\mathrm{d}\right|_{A} r_{B}\right|^{2}}{\mathrm{~d} t}=(36 \cos 25)(-12 \cos 25+18 t \cos 25)+(36 \sin 25-20)(-12 \sin 25+18 t \sin 25-10 t)=0$
$t=0.608$ (or better)
(b)(i) Alternative (Not in the specification):

```
A}\mp@subsup{r}{B}{}=(-12\operatorname{cos}25+18t\operatorname{cos}25)\mathbf{i}+(-12\operatorname{sin}25+18tsin25-10t)\mathbf{j
```

The corresponding marks awarded for finding the closest approach time:

```
(-12\operatorname{cos}25 + 18tcos25) (18sin65) + (-12sin25 + 18tsin25 - 10t) (18cos65-10) = 0M1
```

$271.85 t=165.27$ A1
$t=0.608$ (or better) A1
(b)(ii) FT from their answers in part (b)(i)

MM03

General Certificate of Education (A-level) June 2013

Mathematics
MM03

(Specification 6360)

Mechanics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk
Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1	Use of Impulse-momentum principle $\begin{aligned} & \int_{(0)}^{(T)}(3 t+1) \mathrm{d} t=2(5)-2(1) \\ & {\left[\frac{3}{2} t^{2}+t\right]_{(0)}^{(T)}=(8)} \end{aligned}$ $3 T^{2}+2 T-16=0$ $(3 T+8)(T-2)=0$ or $\quad T=\frac{-2 \pm \sqrt{4-4(3)(-16)}}{2(3)}$ ($T=-\frac{8}{3}$ unacceptable, not in the interval $0 \leq t \leq 3$) $\underline{T=2}$	M1 A1 A1 A1 m1 A1	6	$\int_{(0)}^{(T)}(3 t+1) \mathrm{d} t= \pm 2(5) \pm 2(1)$ Condone sign error for M1 A1 for all correct Correct integration, PI by the correct quadratic Correct use of correct limits and rearrangement Solution of their quadratic, correct attempt needed
	Total		6	
2	$\begin{aligned} & {[P]=\mathrm{MLT}^{-2} \cdot \mathrm{~L}^{2} \cdot \mathrm{~T}^{-1}=\mathrm{ML}^{2} \mathrm{~T}^{-3}} \\ & {[m g v \sin \theta]=\mathrm{M} \cdot \mathrm{LT}^{-2} \cdot \mathrm{LT}^{-1}=\mathrm{ML}^{2} \mathrm{~T}^{-3}} \\ & {[R v]=\mathrm{MLT}^{-2} \cdot \mathrm{LT}^{-1}=\mathrm{ML}^{2} \mathrm{~T}^{-3}} \\ & {\left[\frac{1}{2} m v^{3} \frac{\sin \theta}{h}\right]=\mathrm{M} \cdot \mathrm{~L}^{3} \mathrm{~T}^{-3} \cdot \mathrm{~L}^{-1}=\mathrm{ML}^{2} \mathrm{~T}^{-3}} \end{aligned}$ The formula is dimensionally consistent	B1 B1 B1 B1 B1 E1		For correct unsimplified dimensions of quantities All simplifications correct Dependent on the last B1
	Total		6	

Q	Solution	Marks	Total	Comments
6	(Let $v_{B}=a \mathbf{i}-b \mathbf{j}$)			
	$\frac{a}{b}=\frac{3}{2}$	M1		Allow sign error
	$\frac{a}{b}=\frac{3}{2}$	A1		OE
	$\begin{aligned} & \text { (Squares are smooth } \Rightarrow \mathrm{j} \text { component } \Rightarrow \text {) } \\ & b=3 \end{aligned}$	B1		
	$\begin{aligned} & a=\frac{9}{2} \\ & \left(v_{B}=\frac{9}{2} \mathbf{i}-3 \mathbf{j}\right) \end{aligned}$	A1	4	AG
(b)	(C.L.M. along the line of centres:) $4(4)-2(2)=4\left(v_{A}\right)+2\left(\frac{9}{2}\right)$	M1		OE, No sign errors
	$v_{A}=\frac{3}{4}$ (Restitution along the line of centres:) $e=\frac{-\frac{3}{4}+\frac{9}{2}}{4+2} \quad \text { OE }$	A1 M1 A1		M1 for correct terms, A0 for sign error
	$e=\frac{5}{8}$	A1	5	
(c)	($I=$ Change in momentum of B along the line of centres)			
	$=2\left(\frac{9}{2} \mathbf{i}\right)-2(-2 \mathbf{i})$	M1		Allow sign error and missing \mathbf{i}
	$=13 \mathrm{i}$	A1		A0 for magnitude or $-13 \mathbf{i}$
	Ns or $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	B1	3	
	Total		12	

Q	Solution	Marks	Total	Comments
7(b)				
	$\begin{aligned} & v_{A} \\ & 150 \end{aligned} \quad\left[\begin{array}{l} v_{H} \\ 240 \end{array}\right.$	M1		Right-angled triangle with 240 and 150 marked.
		A1		Correct orientation
	$\cos \alpha=\frac{150}{10} \quad \text { or } \quad \sin \beta=\frac{150}{20}$	M1		
	$\alpha=51.3^{\circ} \quad$ or $\quad \beta=38.7^{\circ}$	A1		PI by correct bearing
	Bearing: 031.3°	A1	5	Allow 31.3
	Total		14	
	TOTAL		75	

A-LEVEL

Mathematics

Mechanics 3 - MM03
Mark scheme

6360
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$x=4 \sqrt{3} t$	B1		
	$\begin{aligned} & y=4 t-\frac{1}{2} g t^{2} \\ & t=\frac{x}{4 \sqrt{3}} \end{aligned}$	B1		
	$\begin{aligned} & y=4 \times \frac{x}{4 \sqrt{3}}-\frac{1}{2}(9.8)\left(\frac{x}{4 \sqrt{3}}\right)^{2} \\ & y=\frac{x}{\sqrt{3}}-\frac{49 x^{2}}{480} \end{aligned}$	M1 A1	4	AG
(b)	$y=\frac{4}{\sqrt{3}}-\frac{49(4)^{2}}{480}$ (The height is $0.676+0.3$) 0.98 m or 98 cm	M1 A1	2	PI by correct answer CAO
(c)	No air resistance or The ball does not spin or No loss of energy	B1	1	
	Total		7	

(a) Only quoting the formula and substituting scores M1 A1.

Q	Solution	Mark	Total	Comment
3 (a)	$\mathrm{I}=\int^{3}(3 \mathrm{t}+1) \mathrm{d} t$	M1		Condone missing limits and missing $\mathrm{d} t$
	$=\left[\frac{3}{2} t^{2}+t\right]_{0}^{3}$	m1		For correct integration only
	$=\frac{33}{2} \text { or } 16.5 \mathrm{Ns}$	A1	3	Condone missing units
(b)	$\frac{33}{2}=0.5 v-0.5(4)$			
		M1		Impulse/momentum equation for correct
		A1F	2	terms, FT on their impulse from part (a)
(c)	$\begin{aligned} & \int_{0}^{T}(3 \mathrm{t}+1) \mathrm{d} t=0.5(20)-0.5(4) \\ & {\left[\frac{3}{2} t^{2}+t\right]_{0}^{T}=0.5(20)-0.5(4)} \end{aligned}$	M1		Correct impulsemomentum equation, condone missing limits
	$3 T^{2}+2 T-16=0$	A1		Correct quadratic equation
	$(3 T+8)(T-2)=0 \text { or } T=\frac{-2 \pm \sqrt{(-2)^{2}-4(3)(-16)}}{2(3)}$	m1		Correct solution of their equation, PI
	$\begin{aligned} & T=2 \mathrm{~s} \\ & \left(T=-\frac{8}{3} \text { s impossible }\right) \end{aligned}$	A1	4	Rejecting impossible time PI
	Total		9	

(a)

Alternative (non-calculus): Attempt at finding the area under force-time graph M1

$$
\begin{aligned}
& =\frac{1+10}{2} \times 3 \quad \text { OE } \quad \text { A1 } \\
& =33 / 2 \text { or } 16.5(\mathrm{NS}) \quad \mathrm{A} 1
\end{aligned}
$$

(c)

Alternative:

$$
\begin{aligned}
& a=\frac{3 t+1}{0.5} \\
& v=\int \frac{3 t+1}{0.5}(\mathrm{~d} t) \quad \text { Attempt at integrating the acceleration } \quad \text { M1 } \\
& v=3 t^{2}+2 t+4 \\
& 20=3 T^{2}+2 T+4 \\
& 3 T^{2}+2 T-16=0 \quad \text { A1 , etc. }
\end{aligned}
$$

Alternative (non-calculus): Attempt at finding the area under force-time graph for impulse

$$
\frac{1+(3 T+1)}{2} \times T=0.5(20)-0.5(4) \quad \text { OE } \quad \mathrm{M} 1
$$

4 (c) Alternative 1:

$$
\begin{aligned}
& A B^{2}=(2-10 t)^{2}+(1+6 t)^{2} \\
& A B^{2}=4-40 t+100 t^{2}+1+12 t+36 t^{2}
\end{aligned} \quad \text { M1 }
$$

$$
A \text { and } B \text { are closest when } \frac{\mathrm{d} A B^{2}}{\mathrm{~d} t}\left(\text { or } \frac{\mathrm{d} A B}{\mathrm{~d} t}\right)=0 \quad \mathrm{~B} 1
$$

$$
-40+200 t+12+72 t=0 \quad m 1
$$

$$
t=\frac{7}{68} \text { or } 0.103
$$

4 (c) Alternative 2:
$A B^{2}=(2-10 t)^{2}+(1+6 t)^{2}$

A1
$A B^{2}=4-40 t+100 t^{2}+1+12 t+36 t^{2}$
$A B^{2}=136 t^{2}-28 t+5$
$A B^{2}=136\left(\left(t-\frac{7}{68}\right)^{2}+\ldots\right)$
m1 A1 m1 for attempt at completing the square of their quadratic
$t=\frac{7}{68}$ or 0.103

4(c) Alternative 3 (Not in the specification):
$[(2-10 t) \mathbf{i}+(1+6 t) \mathbf{j}] \cdot[-10 \mathbf{i}+6 \mathbf{j}](=0) \quad$ M1 for the scalar product of the r with their ${ }_{A} v_{B}$ A1 for all correct
$-20+100 t+6+36 t \quad(=0)$ A1
$-20+100 t+6+36 t=0$ m 1 for correctly solving their equation
$t=\frac{7}{68}$ or 0.103
A1

Q	Solution	Mark	Total	Comment
5 (a)	'No change' with an attempt to explain	B1		
(b)	Explanation referring to smoothness or lack of friction parallel to the plane	B1	2	
	Speed before impact $=\sqrt{2 g h} \quad \mathrm{PI}$	M1		
		A1		Allow \pm expressions
	$\begin{aligned} & \text { Parrallel component after impact }=\sqrt{2 g h} \sin \vartheta \\ & \text { Perpendicular component after impact }=e \sqrt{2 g h} \cos \vartheta \end{aligned}$	A1	3	
(c)	At B,) $\quad 0=\mathrm{e} \sqrt{2 g h} \cos \vartheta^{*} t-\frac{1}{2} g \cos \vartheta t^{2}$	M1 A1		Allow M1 for using $\sin \vartheta$ instead of $\cos \vartheta^{*}$ and +
		A1		instead of -
	$\begin{gathered} t=\frac{2 \mathrm{e} \sqrt{2 g h} \cos \vartheta}{g \cos \vartheta} \text { or } \frac{2 \mathrm{e} \sqrt{2 g h}}{g} \\ x=\sqrt{2 g h} \sin \vartheta^{*} t+\frac{1}{2} g \sin \vartheta t^{2} \end{gathered}$	M1 A1		Allow M1 for using $\cos \vartheta$ instead of
	$\sqrt{2 g h} \sin \vartheta 2 e \sqrt{2 g h} \quad g \sin \vartheta 4 \mathrm{e}^{2} 2 g h$	m1		instead of + Elimination of t. OE
	$A B=\frac{\sqrt{2 g}}{g}+\frac{g^{2}}{2}$			
	$\begin{aligned} & A B=\frac{4 g h e \sin \vartheta}{g}+\frac{8 g^{2} h \mathrm{e}^{2} \sin \vartheta}{2 g^{2}} \\ & A B=4 h \mathrm{e} \sin \vartheta+4 h \mathrm{e}^{2} \sin \vartheta \\ & A B=4 h \mathrm{e}(\mathrm{e}+1) \sin \vartheta \end{aligned}$	A1	7	AG, must be convinced
	Total		12	

(a) The minimum statement for 2 marks is: 'No friction, so no change to velocity parallel to the plane'

Allow numerical value of 9.8 for g in part (c), but deduct one A1 mark in part (b) if they have used numerical value.

5(c) Alternative

(At $B,) \quad 0=v \sin \alpha t-\frac{1}{2} g t^{2} \cos \vartheta \quad$ M1

$$
t=\frac{2 v \sin \alpha}{g \cos \vartheta}
$$

$$
\mathrm{m} 1
$$

$x=v \cos \alpha t+\frac{1}{2} g t^{2} \sin \vartheta$
M1
$A B=v \cos \alpha\left(\frac{2 v \sin \alpha}{g \cos \vartheta}\right)+\frac{1}{2} g\left(\frac{2 v \sin \alpha}{g \cos \vartheta}\right)^{2} \sin \vartheta$
A1
$A B=\frac{2 v^{2} \sin \alpha \cos \alpha}{g \cos \vartheta}+\frac{2 v^{2} \sin ^{2} \alpha \sin \vartheta}{g \cos ^{2} \vartheta}$
$\sin \alpha=\frac{\sqrt{2 g h} e \cos \vartheta}{v}$
B1(for both)
$\cos \alpha=\frac{\sqrt{2 g h} \sin \vartheta}{v}$
m1
$A B=4 h e \sin \vartheta+4 h e^{2} \sin \vartheta$
$A B=4 h e(e+1) \sin \vartheta$
A1 AG, must be convinced

Q	Solution	Mark	Total	Comment
6 (a)	Conservation of linear momentum along the line of centres:			
	$2 \times 3 \cos 60^{\circ}-4 \times 5 \cos 60^{\circ}=2 \times v$	M1		Condone sign errors
		A1		Correct with $2 v$ or $-2 v$
	$v=-3.5$	A1		Or $\frac{7}{2}$, accept 3.5 from
				consistent working
	Velocity of $A \perp$ to line of centres: $3 \sin 60^{\circ}$	B1		Possibly seen on a diagram
	$V=\sqrt{(3.5)^{2}+\left(3 \sin 60^{\circ}\right)^{2}}$	M1		FT their
	$V=4.36 \text { or } \sqrt{19} \mathrm{~ms}^{-1}$	A1	6	AWRT 4.36, condone missing units
(b)				units
	$\tan ^{-1} \frac{3 \sin 60^{\circ}}{3.5} *$	M1		For correct expression, FT their v from part (a)
	$=37^{\circ}$	A1	2	CAO
(c)	3.5			
	$\begin{aligned} & e=\frac{3 \cos 60^{\circ}+5 \cos 60^{\circ}}{} \\ & e=0.875 \text { or } \frac{7}{8} \end{aligned}$	M1		For correct expression, FT their v from part (a)
		A1	2	CAO
(d)	$I=4 \times 5 \cos 60^{\circ}-4 \times 0 \text { or } 2 \times 3 \cos 60^{\circ}--2 \times 3.5$	M1		OE, condone the missing zero term, FT
	$I=10 \mathrm{Ns}$	A1	2	CAO, condone missing units
	Total		12	

(b) ${ }^{*}$ or $\sin ^{-1} \frac{3 \sin 60^{\circ}}{4.36}$ or $\cos ^{-1} \frac{3.5}{4.36}$

(a) Condone omission of $-2 m(0)$.

7(d) Alternative1:

$$
\begin{aligned}
w_{B} & =\frac{20 u}{9} \times \frac{2}{5} \\
& =\frac{8}{9} u
\end{aligned}
$$

Time taken by B to collide again $=\frac{x}{\frac{8}{9} u}$
Time taken by A to collide again $=\frac{\frac{3 s+12 r}{5}-3 r-x}{\frac{8}{9} u}$

$$
x=\frac{3 s+12 r}{5}-3 r-x \quad \text { or } \quad \frac{3 s-3 r}{10}
$$

The distance of the centre of B from the wall $=\frac{3 s-3 r}{10}+r=\frac{3 s+7 r}{10}$

Alternative 2:

$w_{B}=\frac{20 u}{9} \times \frac{2}{5} \quad \mathrm{M} 1$

$$
=\frac{8}{9} u \quad \quad \mathrm{~A} 1
$$

Velocity of A relative to $B=\frac{16 u}{9}$
Distance to collision $=\frac{3 s+12 r}{5}-3 r$
Time to collision $=\frac{\frac{3 s+12 r}{5}-3 r}{\frac{16 u}{9}}$

$$
=\frac{27 s-27 r^{9}}{80 u}
$$

Distance moved by B $=\frac{8 u}{9}\left(\frac{27 s-27 r}{80 u}\right) \quad$ M1
The required distance $=\frac{8 u}{9}\left(\frac{27 s-27 r}{80 u}\right)+r=\frac{3 s+7 r}{10} \quad \mathrm{~A} 1$

A-level Mathematics
MM03
Mark scheme

June 2015

Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x \mathrm{EE}$	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Question	Solution	Marks	Total	Comments
1	$[F]=\mathrm{MLT}^{-2}$	B1		B1: Correct dimensions of F
	$\begin{aligned} \mathrm{MLT}^{-2} & =\left(\mathrm{LT}^{-1}\right)^{\alpha}\left(\mathrm{L}^{2}\right)^{\beta}\left(\mathrm{ML}^{-3}\right)^{\gamma} \\ & =\mathrm{M}^{\gamma} \mathrm{L}^{\alpha+2 \beta-3 \gamma} \mathrm{~T}^{-\alpha} \end{aligned}$	M1 m1		M1: Substituting the dimensions of the quantities into the given equation to obtain RHS correctly. m 1 : Collecting indices on RHS. Could be implied by later work.
	$\left.\begin{array}{l} \gamma=1 \\ \alpha+2 \beta-3 \gamma=1 \\ -\alpha=-2 \end{array}\right\}$	$\begin{aligned} & \text { A1 } \\ & \text { m1 } \end{aligned}$	6	A1: $\gamma=1$ m 1 : Two correct equations for α and β.
	$\alpha=2 \quad, \quad \beta=1$	A1		A1: Correct values for α and β. Condone use of units instead of dimensions.
	Total		6	

(a)	Alternative: $\left.\begin{array}{l} I \mathrm{j}=0.5(5 \cos \alpha \mathrm{i}+5 \sin \alpha \mathrm{j})-0.5(3 \mathrm{i}) \\ 2.5 \cos \alpha-1.5=0 \\ \cos \alpha=0.6 \\ \sin \alpha=0.8 \\ I=0.5(5 \times 0.8) \\ I=2 \end{array}\right\}$	B1 M1 A1	3	B1: Correct vector equation. M1: Correct value for $\sin \alpha$. A1:Correct impulse.
(b)	Alternative: $\begin{aligned} & 3=3 \sqrt{2} \sin \beta \\ & \cos \beta=\frac{1}{\sqrt{2}} \\ & \mathrm{e}=\frac{3 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)}{\frac{2}{0.5}} \\ & \mathrm{e}=\frac{3}{4} \text { or } 0.75 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	B1: Correct equation for motion parallel B 1 : Value for $\cos \beta$ or $\beta=45^{\circ}$. M1: Correct expression for e or correct ed A1:Correct impulse.

Q	Solution	Marks	Total	Comments
	second collision \Rightarrow $\begin{aligned} & \frac{5}{12} u e-\frac{5}{36} u>\frac{1}{9} u \\ & \frac{5}{12} u e>\frac{9}{36} u \\ & e>\frac{3}{5} \text { or } 0.6 \end{aligned}$ Equal radii \Rightarrow Velocities are parallel to the line of centr	M1 A1F B1 B1		M1: For the inequality $v_{3}>v_{1}$ A1F: Correct value of k. FT their $v_{3}>v_{1}$. The value of k must be less than 1 and greater than 0 to score A1F B1: Comment about equal radii or same size. B1: Comment about the line of centres.
	Total		16	

(b) Alternative:

$2 m\left(\frac{5}{9} u\right)=2 m v_{3}+6 m v_{4}$
$\frac{10}{9} u=2 v_{3}+6 v_{4}$
$e\left(\frac{5}{9} u\right)=v_{4}-v_{3}$
$\frac{10}{9} u=2 v_{3}+6\left(\frac{5}{9} u e+v_{3}\right)$
$8 v_{3}=\frac{10}{9} u-\frac{10}{3} u e$
$v_{3}=\frac{5}{36} u-\frac{5}{12} u e$
OE
second collision \Rightarrow
$\frac{5}{36} u-\frac{5}{12} u e<-\frac{1}{9} u$
$\frac{5}{12} u e>\frac{9}{36} u$
$e>\frac{3}{5}$ or 0.6

M1A1		M1: Equation with three momentum terms. A1: Correct equation.
M1A1		M1: Newton's Law of Restitution. (Allow sign errors.) A1: Correct equation.
$\begin{aligned} & \mathrm{m} 1 \mathrm{~A} 1 \\ & \mathrm{~F} \end{aligned}$		m 1 : Solving equations to find the velocity of B after the second collision. A1F: Correct velocity of B after the second collision. FT their equations.
M1		M1: For the inequality $v_{3}<v_{1}$
A1F		A1F: Correct value of k. The value of k must be less than 1 and greater than 0 to score A1F

		B1 M1 A1	3	B1: Correct right angled velocity triangle. Could be implied by later working. M1: Use of trigonometry to find speed. A1: Correct speed. CAO.
	Total		13	

(a)(ii)	Alternative: Angle for shorter time : 45.58° $\begin{aligned} & t\left(50 \cos 30^{\circ}+35 \cos 45.58^{\circ}\right)=8 \\ & \left(t=\frac{8}{50 \cos 30^{\circ}+35 \cos 45.58^{\circ}}\right) \\ & t=0.118 \mathrm{~h} \text { or } 7.08 \mathrm{~min} \end{aligned}$	B1 M1A1 m1 A1F	5	B1: Selecting the smaller of their two angles from part (a). M1: For $50 \cos 30^{\circ} \pm 35 \cos 46^{\circ}$ A1: Correct expression. m 1 : Using distance over speed. A1F: Correct time. FT their angle. Full marks can be scored by using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.
	Angle for shorter time : 45.58° $\begin{aligned} & \frac{d}{\sin 30^{\circ}}=\frac{8}{\sin 104.42^{\circ}} \\ & d=4.130 \mathrm{~km} \\ & \left(t=\frac{4.130}{35}\right) \\ & t=0.118 \mathrm{~h} \text { or } 7.08 \mathrm{~min} \end{aligned}$	B1 M1 A1 m1		B1: Selecting the smaller of their two angles from part (a). M1: Using the sine rule to find the distance travelled by the frigate with their angle. A1: Correct distance m 1 : Using distance over speed.
		A1F	5	A1: Correct time. FT their angle. Full marks can be scored b using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& Solution \& Marks \& Total \& Comments

\hline \multirow[t]{6}{*}{7 (a)

(b)} \& \[
$$
\begin{aligned}
& y=u \sin (\alpha-\vartheta) t-\frac{1}{2} g \cos \vartheta t^{2} \\
& 0=u \sin (\alpha-\vartheta) t-\frac{1}{2} g \cos \vartheta t^{2} \\
& t=\frac{2 u \sin (\alpha-\vartheta)}{g \cos \vartheta} \\
& u \sin \alpha-g t=0
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| m1 |
| A1 | \& 4 \& | M1: Expression for perpendicular height of particle above the plane. Accept wrong angles for M1 but not sin and cos in wrong places. |
| :--- |
| A1: Correct expression with $y=0$. |
| m 1 : Solving for non-zero t. |
| A1: Correct t. |

\hline \& $$
t=\frac{u \sin \alpha}{g}
$$ \& M1 \& \multirow{5}{*}{5} \& M1: Velocity equation to find time to A.

\hline \& $$
\frac{u \sin \alpha}{g}=\frac{2 u \sin (\alpha-\vartheta)}{g \cos \vartheta}
$$ \& A1 \& \& A1: Correct time.

\hline \& $$
\begin{aligned}
& \sin \alpha \cos \vartheta=2 \sin (\alpha-\vartheta) \\
& \sin \alpha \cos \vartheta=2 \sin \alpha \cos \vartheta-2 \cos \alpha \sin \vartheta
\end{aligned}
$$ \& m1 \& \& m 1 : Forming an equation using their time from part (a) and this time.

\hline \& $$
\left.\begin{array}{l}
\sin \alpha \cos \vartheta=2 \cos \alpha \sin \vartheta \\
\frac{\sin \alpha}{\cos \alpha}=2 \frac{\sin \vartheta}{\cos \vartheta}
\end{array}\right\}
$$

$$
\tan \alpha=2 \tan \vartheta
$$ \& M1 \& \& M1: Use of identity to eliminate compound expressions. It is not enough to only expand $\sin (\alpha-\theta)$ in the expression in part (a) without anything else.

\hline \& \& A1 \& \& A1: Seeing required expression derived with $k=2$.

\hline \& Total \& \& 9 \&

\hline \& TOTAL \& \& 75 \&

\hline
\end{tabular}

[^0]: Set and published by the Assessment and Qualifications Alliance.

[^1]: The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334) Registered address: AQA, Devas Street, Manchester M15 6EX

