AQA Maths Mechanics 3 Mark Scheme Pack 2006-2015

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03

Q	Solution	Marks	Total	Comments
1(a)(i)	$\mathbf{T}^1 = \mathbf{L}^a \times \mathbf{M}^b \times (\mathbf{L}\mathbf{T}^{-2})^c$	M1A1		
	There is no M on the left, so $b = 0$	E1	3	
(ii)	$\mathbf{T}^1 = \mathbf{L}^{a+c} \times \mathbf{M}^0 \times \mathbf{T}^{-2}$	M1		
	(-2c = 1)			
		m1		equating corresponding indices
	a + c = 0			
	$a = \frac{1}{c} = -\frac{1}{c}$	m1		solution
	2, 2, 2			
	\therefore Period = $kl^{\frac{1}{2}}g^{-\frac{1}{2}}$	A1F	4	constant needed
	Total		7	
2(a)	conservation of momentum			
	$mu = mv_A + mv_B$	M1		
	$u = v_A + v_B$	A1		
	restitution			
	$eu = v_B - v_A$	M1A1		OE
	$v_{R} = \frac{1}{2}u(1+e)$	A1F	5	OE
	2 2			
	311			
(b)	$mv_B = mw_B + 2m\frac{3\pi}{8}$	MIAI		
	3 <i>u</i>	M1A1		OF
	$ev_B = \frac{1}{8} - w_B$	WIAI		0E
	Elimination of w_B	m1		dependent on both M1s
	$4e^2 + 8e - 5 = 0$	A1F		simplified quadratic equation in <i>e</i> only
	$e = \frac{1}{2}$	A1F	7	stated as the only value
	2			(0 < e < 1 for follow through)
	Total		12	

Q	Solution	Marks	Total	Comments
3(a)	$I = 1.4 \times 10^5 \int_{0}^{0.1} (t^2 - 10t^3) dt$	M1A1		
	$=1.4\times10^{5}\left[\frac{1}{3}t^{3}-\frac{10}{4}t^{4}\right]_{0}^{0.1}$	ml		
	=11.7 Ns	A1	4	AG
(b)	initial momentum = $0.45(-15)$ = -6.75 Ns	M1		
	final momentum = $11.7 - 6.75$ = 4.95 Ns	M1		
	velocity after impact = $\frac{4.95}{0.45}$	m1		dependent on both previous M1s
	$=11 \text{ ms}^{-1}$	A1	4	
(c)	The ball is not perfectly elastic			
	or $e \neq 1$ or energy loss	E1	1	

MM03	(cont)
-------------	--------

Q	Solution	Marks	Total	Comments
4(a)	$_{A}\mathbf{v}_{B} = (12\mathbf{i} - 8\mathbf{j}) - (6\mathbf{i} + 12\mathbf{j})$	M1		
	$= 6\mathbf{i} - 20\mathbf{j}$	A1	2	needs to be in terms of i and j
(b)	$_{A}\mathbf{r}_{B}=\mathbf{r}_{0}+_{A}\mathbf{v}_{B}t$	M1A1		attempted use
	$_{A}\mathbf{r}_{B} = (18\mathbf{i} + 5\mathbf{j}) - (5\mathbf{i} - \mathbf{j}) + (6\mathbf{i} - 20\mathbf{j})t$	A1F		
	${}_{A}\mathbf{r}_{B} = (13+6t)\mathbf{i} + (6-20t)\mathbf{j}$	A1	4	AG (not penalised if not in terms of i and i)
	Alternative			u)
	$\mathbf{r}_A = 5\mathbf{i} - \mathbf{j} + (6\mathbf{i} + 12\mathbf{j})t$			
	$\mathbf{r}_{R} = 18\mathbf{i} + 5\mathbf{j} + (12\mathbf{i} - 8\mathbf{j})t$	M1A1		A1 for each of \mathbf{r}_{4} and \mathbf{r}_{B}
	$r_{R} = 18i + 5j + (12i - 8j)t$	A1		
	-[5i - i + (6i + 12i)t]			
	${}_{A}\mathbf{r}_{B} = (13+6t)\mathbf{i} + (6-20t)\mathbf{j}$	A1F		
(c)	$s^{2} = (13+6t)^{2} + (6-20t)^{2}$	M1A1F		attempt for squaring and tidying up
	A and B are closest when $\frac{ds}{dt} = 0$ or	M1		
	$\frac{\mathrm{d}s^2}{\mathrm{d}t} = 0$			
	$2s\frac{\mathrm{d}s}{\mathrm{d}t} = 2(13+6t)6 - 2(6-20t)20 = 0$	M1 A1		accuracy of differentiation
	t = 0.0963	A1F	6	
	$\left(\text{or } 0.096 \text{ or } \frac{21}{218}\right)$			
	Altornativa			
	$\mathbf{r} \cdot \mathbf{v} = 0$	M1		
	$A^{\mathbf{I}}_{B} + A^{\mathbf{V}}_{A} = 0$ [(13+6t)i+(6-20t)i].[6i-20i]-0	M1		
	$[(13+6t) - 20(6-20t)] \cdot [0t - 20t] = 0$	M1A1		
	436t - 42 = 0	AIF		
	$t = 0.0963$ (or 0.096 or $\frac{21}{218}$)	AlF		
(d)	$s = \sqrt{(13 + 6 \times 0.0963)^2 + (6 - 20 \times 0.0963)^2}$	m1		dependent on M1s in part (c)
	s = 14.2 km	A1F	2	AWRT
	Total		14	

MM03 (cont	MM03 (cont)					
Q	Solution	Marks	Total	Comments		
5(a)	$y = -\frac{1}{2}gt^2 + 20\sin 30.t$	M1A1				
	$x = 20\cos 30.t$	M1				
	$t = \frac{x}{20\cos 30}$	A1				
	$y = -\frac{1}{2}g\frac{x^2}{400\cos^2 30} + 20\sin 30\frac{x}{20\cos 30}$	M1				
	$y = x \tan 30 - \frac{gx^2}{800 \cos^2 30^\circ}$	A1	6	AG		
(b)	$2.5 = x \tan 30 - \frac{9.8x^2}{800 \cos^2 30}$					
	$9.8x^2 - 346x + 1500 = 0$	M1A1		substituting and tidying up		
	$x = \frac{346 \pm \sqrt{119716 - 58800}}{19.6}$	M1				
	=30.3 (or 30.2) & 5.06 (or 5.05)					
	answer: 30.3m (or 30.2m)	A1F	4	at least 3 s.f. required		
(c)	no air resistance,	B1				
	the ball is a particle	B1	2			
	etc.					
	Total		12			

Q	Solution	Marks	Total	Comments
6(a)	Components of			
	velocities:			
	Before $A = \frac{A}{8 \cos 30^\circ} + \frac{4 \sin 60^\circ}{4 \cos 60^\circ}$			
	After V_A V_B V_B V_B			
	conservation of linear momentum along the line of centres: $m \times 8\cos 30 + m \times 4\cos 60 = mv_A + mv_B$	M1A1		OE unsimplified
	$v_A + v_B = 8.93$ Law of restitution along the line of centre:			
	$\frac{v_B - v_A}{8\cos 30 - 4\cos 60} = \frac{1}{2}$	M1A1		OE unsimplified
	$v_B - v_A = 2.46$ $v_B = 5.70$	m1		dependent on both M1s
		A1F		AWRT $\left(\text{ or } 3\sqrt{3} + \frac{1}{2} \right)$
	momentum of <i>B</i> perpendicular to the line of centres is unchanged Speed of $B = \sqrt{u_B^2 + v_B^2}$	B1		PI (can also be gained in part (b))
	$= \sqrt{(4\sin 60)^2 + (5.70)^2}$ = 6.67	m1 A1F	9	dependent on both M1s
(b)	direction of $B = \tan^{-1} \frac{4\sin 60}{5.70} = 31.3^{\circ}$	m1 A1F	2	dependent on both M1s and B1
	Total		11	

MM03 (con	t)			
Q	Solution	Marks	Total	Comments
7(a)(i)	the projectile hits the plane again when			
	$(Ut\sin\theta - \frac{1}{2}gt^2\cos\alpha) = 0$	M1A1		
	$\therefore t = \frac{2U\sin\theta}{g\cos\alpha}$	A1F	3	need to be simplified
(ii)	the component of velocity perpendicular to plane = $2U\sin\theta$			
	$U\sin\theta - g\frac{2\theta\sin\theta}{g\cos\alpha}\cos\alpha =$	M1A1F		
	$-U \sin \theta =$	Δ.1	2	٨G
		AI	5	AU
(b)	Newton's law of restitution perpendicular to plane: $u = eU \sin \theta$	M1		
	$a = -g \cos \alpha$ $s = 0$			
	$0 = eU\sin\theta T - \frac{1}{2}g\cos\alpha T^2$	M1 A1		
	$T = \frac{2eU\sin\theta}{g\cos\alpha} = et$			
	t:T=1:e	A1F	4	
	Total		10	
	TOTAL		75	

PMT

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2007 examination - June series

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and	is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy			
Е	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03				
Q	Solution	Marks	Total	Comments
1(a)	$MLT^{-2} = \frac{[G]MM}{L^2}$	M1 A1		
	$[G] = L^{3}M^{-1}T^{-2}$	A1F	3	
(b)	$t = km^{\alpha} R^{\beta} G^{\gamma}$			
	$T = M^{\alpha} L^{\beta} M^{-\gamma} L^{3\gamma} T^{-2\gamma}$	M1 A1F		L, M, T for G are needed to gain M1
	$-2\gamma = 1 \Rightarrow \gamma = -\frac{1}{2}$			
	$\alpha - \gamma = 0 \implies \alpha = -\frac{1}{2}$	m1 m1		Getting 3 equations Solution
	$\beta + 3\gamma = 0 \Rightarrow \beta = \frac{3}{2}$	A1F	5	Finding α, β, γ
	Total		8	

Q	Solution	Marks	Total	Comments
2 (a)	$_{B}\mathbf{v}_{A}=\mathbf{v}_{A}-\mathbf{v}_{B}$			
	$= (20\mathbf{i} - 10\mathbf{j} + 20\mathbf{k}) - (30\mathbf{i} + 10\mathbf{j} + 10\mathbf{k})$	M1A1	2	Simplification not necessary
	= -10i - 20j + 10k			1
	5			
(b)	$\mathbf{r}_{i} = (8000\mathbf{i} + 1500\mathbf{i} + 3000\mathbf{k})$			
	= (2000i + 500i + 1000k)	MI		
	-(20001 + 300) + 1000 k)			
	= 60001 + 10001 + 2000 ((0001) + 10001 + 2000			
	$_{\rm B}\mathbf{r}_{\rm A} = (6000\mathbf{i} + 1000\mathbf{j} + 2000\mathbf{k})$	M1	2	
	+(-10i - 20j + 10k)t	AIF	3	Simplification not necessary
	$_{\rm B}\mathbf{r}_{\rm A} = (6000 - 10t)\mathbf{i} + (1000 - 20t)\mathbf{j}$			
	$+(2000+10t)\mathbf{k}$			
(c)	$ \mathbf{r}_{t} ^{2} = (6000 - 10t)^{2} + (1000 - 20t)^{2}$			
	$(3000 \pm 10t)^2$	M1		
	(2000 + 10l)	AIF		
	The helicopters are closest when $ _{B}\mathbf{r}_{A} $			
	15 minimum. $(6000 - 10.0^2 + (1000 - 20.0^2))$			
	$y = (6000 - 10t)^2 + (1000 - 20t)^2$			
	$+(2000+10t)^{2}$			
	$\frac{dy}{dt} = 2(-10)(6000 - 10t)$			
	dt	m1		
	+2(-20)(1000-20t)	A1F		
	+ 2(10)(2000 + 10t) = 0			
	t = 100	A1F	5	
	Alternative:			
	$\begin{pmatrix} 6000 - 10t \\ -10 \end{pmatrix}$	(M1)		
	$ 1000 - 20t \cdot -20 = 0$	(A1F)		
	$\left(2000+10t\right)\left(10\right)$	()		
	-60000 + 100t - 20000 + 400t	(m1)		
	+20000 + 100t = 0	(A1F)		
	600t = 60000			
	t = 100	(A1F)	(5)	
		()		
	Total		10	

MM03	(cont)
	(

Q	Solution	Marks	Total	Comments
3 (a)	$I = \int_{0}^{3} (4t + 5) dt$	M1		
	$= \left[2t^2+5t\right]_0^3$	m1		Or evaluation of constant
	= 33 Ns	A1	3	
	Alternative :			
	I = Area under the Force–Time graph	(M1)		
	$=\frac{17+5}{2}\times 3$	(m1)		
	= 33 Ns	(A1)	(3)	
(b)	I — 1013) - 1014			
	33 - 2y - 2(0)	M1		
	$y = -165 \text{ ms}^{-1}$	A1F	2	
	v -10.5 ms			
(c)	$I = \int_{0}^{t} (4t+5)dt = 2(37.5) - 2(0)$	M1		
	$\int_{0}^{1} \int_{0}^{1} \int_{0$	A 1		
	2i + 3i - 75 = 0	AI		
	$t = \frac{-5 \pm \sqrt{25 + 8 \times 75}}{4}$	m1		
	<i>t</i> = 5	A1F	4	For one value of <i>t</i> identified only
	Total		9	
4(a)	Company tion of monotone to			
	Conservation of momentum : 0.2(2) = 0.2(2) = 0.2(2) = 0.2(2)	M1A1		
	$0.5(5) - 0.2(2) - 0.5v_A + 0.2v_B$ $3v_A + 2v_B - 5$ (1)	WIAI		
	$S_{V_A} + 2V_B = S$ (1) Newton's experimental law:			
	$v_{-} - v_{-}$			
	$0.8 = \frac{r_B - r_A}{5}$	M1		
	$v_B - v_A = 4$ (2)	A1		For both (1) and (2)
	Solving (1) and (2)	m1		Dependent on both M1s
	$v_{B} = 3.4$	A 1E	6	For both solutions
	$v_{A} = -0.6$	АІГ	0	
ക	ο σ V			
(0)	$0.7 = \frac{1}{3.4}$	M1		
	v = 2.38	A1F		
	Speed of B (2.38) \succ Speed of A (0.6)			
	\therefore B collides again with A	E1	3	Cannot be gained without A1F
	Total		9	

MM03 ((cont)
TITION ((COHC)

Q	Solution	Marks	Total	Comments
5(a)	$v = ut \sin \alpha - \frac{1}{2} gt^2$	M1		
	2^{gi}	A1		
	$x = ut \cos \alpha$	M1		
	$t = \frac{x}{u \cos \alpha}$	A1		
	$y = u \left(\frac{x}{u \cos \alpha}\right) \sin \alpha - \frac{1}{2} g \left(\frac{x}{u \cos \alpha}\right)^2$	M1		
	$y = x \tan \alpha - \frac{gx^2}{u^2 \cos^2 \alpha}$ $y = x \tan \alpha - \frac{gx^2}{u^2 \cos^2 \alpha} (1 + \tan^2 \alpha)$	A1	6	Answer given
	$2u^2$ (1 and 3)			
(b)(i)	$1 = R \tan \alpha - \frac{10R^2}{2u^2} (1 + \tan^2 \alpha)$	M1		
	$5R^2 \tan^2 \alpha - u^2 R \tan \alpha + 5R^2 + u^2 = 0$	A1	2	Answer given
(ii)	For real solutions of the quadratic :			
	$u^4 R^2 - 20R^2 (5R^2 + u^2) \ge 0$	M1		
	$R^2 \le \frac{u^4 - 20u^2}{100}$			
	$R^2 \le \frac{u^2(u^2 - 20)}{100}$	A1	2	Answer given
(iii)	$5^2 \le \frac{u^2(u^2 - 20)}{100}$			
	$u^4 - 20u^2 - 2500 \ge 0$	M1		Condone equation
	$u_{\rm min}^{2} = 61.0$ (or $10 + \sqrt{2600}$)	A1		
	$u_{\min} = 7.81$	A1F	3	3 sf required
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	$\wedge^{u\sin 30^{\circ}}$ \wedge^{0}			
	Before: $A = u\cos 30^{\circ}$ $B = 0$			
	After: $After:$ Aft			
	Con. of Mom. along the line of centres: $mu \cos 30^\circ = mv_A + mv_B$	M1		
	$v_A + v_B = \frac{\sqrt{3}}{2}u$ (1)	A1		
	Newton's experimental law :			
	$e = \frac{v_B - v_A}{u \cos 30^\circ - 0}$	M1		
	$v_B - v_A = \frac{\sqrt{3}}{2}ue$ (2)	A1		
	Solving (1) and (2) :			
	$v_B = \frac{\sqrt{3}}{4}u(1+e)$	A1	5	Answer given
(b)	$\perp u \sin 30^\circ = \frac{1}{2}u$	B1		usin30 accepted
	$ \qquad v_A = \frac{\sqrt{3}}{2}u - \frac{\sqrt{3}}{4}u(1+e)$	M1 A1F	3	Simplification not needed
(c)	$\alpha = \tan^{-1} \frac{\frac{1}{2}u}{\frac{\sqrt{3}}{4}u(1-e)}$	M1 A1F		
	$\alpha = \tan^{-1} \frac{6}{\sqrt{3}}$ $\alpha = 74^{\circ}$	A1F	3	To the nearest degree required
	Total		11	

Q	Solution	Marks	Total	Comments
7(a)	j			
	β			
	$y = ut\sin\theta - \frac{1}{2}gt^2\cos\theta$	M1A1		
	$y=0 \implies t = \frac{2u\sin\theta}{g\cos\alpha}$	A1F		
	$x = ut\cos\theta - \frac{1}{2}gt^2\sin\alpha$	M1A1		
	$R = u \frac{2u\sin\theta}{g\cos\alpha}\cos\theta - \frac{1}{2}g\left(\frac{2u\sin\theta}{g\cos\alpha}\right)^2\sin\alpha$	M1		
	$R = \frac{2u^2 \sin \theta \cos(\theta + \alpha)}{g \cos^2 \alpha}$	m1 A1	8	Dependent on M1s Answer given
(b)	$R = \frac{2u^2 \times \frac{1}{2} [\sin(2\theta + \alpha) + \sin(-\alpha)]}{g \cos^2 \alpha}$ R is maximum when $\sin(2\theta + \alpha) = 1$ or $2\theta + \alpha = \frac{\pi}{2}$	B1 M1		
	$\therefore \theta = \frac{\pi}{4} - \frac{\alpha}{2}$	A1	3	Answer given
(c)	$y = 0 \implies t = \frac{2u\sin\theta}{g\cos\alpha}$ $\dot{x} = 0 \implies t = \frac{u\cos\theta}{g\sin\alpha}$ $\frac{2u\sin\theta}{g\cos\alpha} = \frac{u\cos\theta}{g\sin\alpha}$	M1 A2,1		For using $y=0$ and $\dot{x} = 0$ A2 for both correct
	$2\tan\theta = \cot\alpha$	A1	4	Answer given
				N.B. A problem arose which ultimately affected the marking of part 7(c). Please see the Report on the Examination for details.
	Total		15	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright $\ensuremath{\textcircled{O}}$ 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for	or accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MM03				
Q	Solution	Marks	Total	Comments
1	$LT^{-1} = L^{\alpha} \times (ML^{-3})^{\beta} (LT^{-2})^{\gamma}$ There is no <i>M</i> on the left hand side, so $\beta = 0$.	M1 E1		
	$LT^{-1} = L^{\alpha + \gamma} T^{-2\gamma}$	m1		Dependent on M1
	$-2\gamma = -1$	m1		Equating corresponding indices
	$\gamma = \frac{1}{2}$	A1		
	$\alpha = \frac{1}{2}$	A1	6	
	Total		6	
2(a)	${}_{A}v_{B} = v_{B} - v_{A}$ $= (3i + 4j) - (5i - j)$ $= -2i + 5j$	M1 A1	2	
(b)	${}_{A}r_{0B} = (40i - 90j) - (-60i + 160j)$ = 100i - 250j ${}_{A}r_{B} = (100i - 250j) + (-2i + 5j)t$	M1 m1 A1F	3	Simplification not necessary ALTERNATIVE : $r_{A} = (60i + 160 j) + (5i - j)t$ M1 $r_{B} = (40i - 90 j) + (3i + 4 j)t$ $_{A}r_{B} = [(40i - 90 j) + (3i + 4 j)t] - [(60i + 160 j) + (5i - j)t]$ m1A1
(c)	$_{A}r_{B} = (100 - 2t)i + (-250 + 5t)j$	M1		Collecting <i>i</i> and <i>j</i> terms
	$(100 - 2t) = 0 \Leftrightarrow t = 50$ $(-250 + 5t) = 0 \Leftrightarrow t = 50$ $\therefore A \text{ and } P \text{ would collide}$	A1F E1	3	
			ALTE	RNATIVE :
			[(100 –	2t)i + (-250 + 5t)j. $(-2i + 5j) = 0$ M1
			-200+	$4t - 1250 + 25t = 0 \implies t = 50$ A1
			$ _{A}r_{B} \sqrt{(}$	$\overline{100 - 2 \times 50)^2 + (-250 + 5 \times 50)^2} = 0$
			∴ A an	ad <i>B</i> would collide E1
	Total		8	

Q	Solution	Marks	Total	Comments
3	$\int_{0}^{t} 5 \times 10^{3} t^{2} dt = 0.2(2) - 0.2(0)$	M1A1		Impulse-Momentum principle
	$\frac{5 \times 10^3}{3}t^3 = 0.4$	A1F		
	t = 0.0621	A1F	4	At least 3 sig. fig. required
	Total		4	
4(a)	C.L.M. $m (4\mathbf{i} + 3\mathbf{j}) + 2m(-2\mathbf{i} + 2\mathbf{j}) = mv + 2m(\mathbf{i} + \mathbf{j})$ $7\mathbf{j} = v + (2\mathbf{i} + 2\mathbf{j})$ $v = -2\mathbf{i} + 5\mathbf{j}$	M1 A2,1,0	3	A1 for one slip
(b)	The angle with j direction : A: $\tan^{-1}\frac{2}{\pi} = 21.8^{\circ}$			OE. in i direction
	$5 = B : \tan^{-1} \frac{1}{1} = 45^{\circ}$	M1		M1 for two inverse tan and addition of angles
	The angle = $21.8^{\circ} + 45^{\circ} = 67^{\circ}$	A1F	3	AWRT. Alternative (not in the specification) $(-2\mathbf{i}+5\mathbf{j}).(\mathbf{i}+\mathbf{j}) = \sqrt{29} \times \sqrt{2} \cos \theta$ (M1)
				$\cos\theta = \frac{1}{\sqrt{58}}$ (A1) $\theta = 67^{\circ}$ (A1F) awrt
(c)	The impulse = Gain in momentum of A = $m(-2\mathbf{i} + 5\mathbf{j}) - m(4\mathbf{i} + 3\mathbf{j})$ = $-6m\mathbf{i} + 2m\mathbf{j}$	M1 A1F A1F	3	
(d)	$-3\mathbf{i} + \mathbf{j}$ or any scalar multiple of $-3\mathbf{i} + \mathbf{j}$ Total	B1	1 10	

MM03	(cont)
-------------	--------

Q	Solution	Marks	Total	Comments
5 (a)	$5 = 10 \cos \alpha . t$	M1		
	$t = \frac{5}{10 \cos \alpha}$	A1		
	$1 = -\frac{1}{2}(9.8)t^2 + 10\sin\alpha t$	M1A1		
	$1 = -\frac{1}{2}(9.8)\frac{25}{100} + 10\sin\alpha\frac{5}{10}$	m1		Dependent on both
	$1 = -\frac{1}{2}(9.8)\frac{25}{100}(1 + \tan^2 \alpha) + 10\sin \alpha \frac{5}{10\cos \alpha}$	A1		11115
	$49\tan^2\alpha - 200\tan\alpha + 89 = 0$	A1	7	Answer given
(b)	$\tan \alpha = \frac{200 \pm \sqrt{40000 - 4(49)(89)}}{2 \times 49}$	M1		
	= 3.57, 0.508	A1		AWRT
	$\alpha = 74.4^{\circ}.26.9^{\circ}$	A1F	3	
(c)(i)	$10\cos 26.9^\circ = 8.92$ (or 8.91) > 8			
	\Rightarrow The can will be knocked off the wall	M1		Both values checked
	$10\cos 744^{\circ} = 2.69 < 8$	A1F		Acc. of both results
	\Rightarrow The can will not be knocked off the wall	E1	3	Correct conclusions
		ALTER The can $10 \cos \alpha$ $\cos \alpha > 0$	8 NATIVE will be ki 2 > 8 0.8	E nocked off the wall if
		$\alpha < 36.9$)°	M1A1
		So, for a	$\alpha = 26.9$	the can will be knocked off
5(a)(ii)	$\mathbf{x} = \mathbf{u}t$	and for	$\alpha = 74.4$, the can will not be knocked off E1
5(C)(II)	<i>x</i> - <i>ui</i> 5			
	$t = \frac{5}{10\cos 26.9^\circ}$			
	$v = 10\sin 26.9^{\circ} - 9.8(\frac{5}{10\cos 26.9^{\circ}})$	M1		Any correct use of equations
	v = -0.970	A1F		
	$\tan\theta = \frac{-0.970}{8.92}$	M1		
	$\theta = -6.2^{\circ}$			
	At an angle of depression of 6.2°	A1F	4	AWRT 6°
	Tatal		17	
	lotal		1/	

<u>MM03</u> (cont)

Q	Solution	Marks	Total	Comments
6(a)	v u u			
	Parallel to the wall : velocity is unchanged $u \cos \alpha = v \sin \alpha$ Perpendicular to the wall : Law of Restitution	M1		
	$\frac{v\cos\alpha}{u\sin\alpha} = \frac{3}{4}$	M1		
	$\frac{v\cos\alpha}{v\tan\alpha\sin\alpha} = \frac{3}{4}$	m1		Dependent on both M1s
	$\frac{\cos^2\alpha}{\sin^2\alpha} = \frac{3}{4}$	m1		Dependent on both M1s
	$\tan^2 \alpha = \frac{4}{3}$			
(b)	$\tan \alpha = \frac{2}{\sqrt{3}}$	A1	5	Answer given
	$v = \frac{u}{\tan \alpha}$	M1		
	$v = \frac{\sqrt{3}}{2}u$ or 0.866 u	A1	2	
(c)	Magnitude of Impulse –			
	Change in momentum perpendicular to the wall	M1		
	$= 0.2 \times v \cos \alpha - (-0.2 \times 4 \sin \alpha)$	A1 A1		
	$= 0.2 \times \frac{\sqrt{3}}{2} \times 4\cos\alpha + 0.2 \times 4\sin\alpha$	m1		
	= 1.06 Ns	A1F		
	Average Force = $\frac{1.06}{0.1} = 10.6$ N	A1F	6	
	Total		13	

Q	Solution	Marks	Total	Comments
7	y x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
(a)	$v_y^2 = u^2 \sin^2 \theta - 2 \operatorname{gcos} \alpha . y$	M1 A1		
	$0 = u^2 \sin^2 \theta - 2g \cos \alpha \cdot y_{\max}$	m1		
	$y_{\rm max} = \frac{u^2 \sin^2 \theta}{2 g \cos \alpha}$	A1F	4	
(b)(i)	$u\sin\theta t - \frac{1}{2}g\cos(\alpha)t^2 = 0$	M1		
	$t = \frac{2u\sin\theta}{g\cos\alpha}$	A1	2	
(ii)	$x = u\cos\theta t - \frac{1}{2}g\sin(-\alpha)t^2$	M1 A1		
	$R = u\cos\theta(\frac{2u\sin\theta}{g\cos\alpha}) + \frac{1}{2}g\sin\alpha(\frac{2u\sin\theta}{g\cos\alpha})^2$	M1		
	$=\frac{2u^2\cos\theta\sin\theta\cos\alpha+2u^2\sin\alpha\sin^2\theta}{g\cos^2\alpha}$	m1		Dependent on both
	$=\frac{2u^2\sin\theta(\cos\theta\cos\alpha+\sin\theta\sin\alpha)}{\alpha\cos^2\alpha}$	A1F		19115
	$=\frac{2u^2 \sin\theta \cos(\theta - \alpha)}{g \cos^2 \alpha}$	A1	6	Answer given
(iii)	$\overline{OP} = \frac{2u^2 \sin \theta \cos(\theta - \alpha)}{g \cos^2 \alpha}$			
	$=\frac{2u^2 \frac{1}{2} \left[\sin(2\theta - \alpha) + \sin\alpha\right]}{g \cos^2 \alpha}$	M1A1		
	\overline{OP} is max when $\sin(2\theta - \alpha) = 1$	M1		
	$\overline{OP}_{\max} = \frac{\mu^2 \left(1 + \sin \alpha\right)}{g \cos^2 \alpha}$	A1F		
	$\overline{OP}_{\max} = \frac{u^2 (1 + \sin \alpha)}{g (1 - \sin^2 \alpha)}$			
	$\overline{OP}_{\max} = \frac{u^2}{g\left(1 - \sin\alpha\right)}$	A1	5	Answer given
	Total		17	

Q	Solution	Marks	Total	Comments
7(a)	ALTERNATIVE			
	$0 = u\sin\theta - g\cos a t$	M1		
	$t = \frac{u\sin\theta}{g\cos a}$	A1		
	$y_{max} = u\sin\theta \left(\frac{u\sin\theta}{g\cos a}\right) - \frac{1}{2}g\cos a \left(\frac{u\sin\theta}{g\cos a}\right)^2$	m1		
	$y_{max} = \frac{u^2 \sin^2 \theta}{2g \cos a}$	A1F	4	
	Total		4	

General Certificate of Education

Mathematics 6360

MM03 Mechanics 3

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and ab	breviations used in marking
---------------------------	-----------------------------

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only RA required accuracy					
AWFW	anything which falls within FW further work					
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

PMT

QSolutionMarksTotalComments1 $L = M^{\alpha} (LT^{-1})^{\beta} (LT^{-2})^{\gamma}$ M1A1Image: constraint of the second seco	MM03				
$1 L = M^{\alpha} (LT^{-1})^{\beta} (LT^{-2})^{\gamma} \qquad M1A1$ $\beta + \gamma = 1$ $-\beta - 2\gamma = 0$ $\alpha = 0 \qquad m1 \qquad Getting three equations$ $y = -1 \qquad m1$ $\beta = 2 \qquad A1F \qquad 5$ $2(a) x = 2t \qquad M1$ $t = \frac{x}{2}$ $y = -\frac{1}{2}gt^{2} + 10t \qquad M1$ $t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right) \qquad m1$ $y = -\frac{g}{8}x^{2} + 5x \qquad A1 \qquad 4$ $(b) 1 = -\frac{g}{8}x^{2} + 5x \qquad M1$ $y = -\frac{g}{8}x^{2} + 5x \qquad M1$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g} \qquad M1$ $x = 3.871, 0.211 \qquad A1$ $Distance = 3.66 m \qquad A1 \qquad 4$	Q	Solution	Marks	Total	Comments
$\begin{vmatrix} \beta + \gamma = 1 \\ -\beta - 2\gamma = 0 \\ \alpha = 0 \\ y = -1 \\ \beta = 2 \\ \hline \\$	1	$L = M^{\alpha} (LT^{-1})^{\beta} (LT^{-2})^{\gamma}$	M1A1		
$\begin{vmatrix} \beta + \gamma = 1 \\ -\beta - 2\gamma = 0 \\ \alpha = 0 \\ \gamma = -1 \\ \beta = 2 \\ \hline \\ A1F \\ 5 \\ \hline \\ \hline \\ \hline \\ cmth{algma}$					
$\begin{vmatrix} -\beta - 2\gamma = 0 \\ \alpha = 0 \\ \gamma = -1 \\ \beta = 2 \\ \hline \\$		$\beta + \gamma = 1$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$-\beta - 2\gamma = 0$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\alpha = 0$	m1		Getting three equations
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		·· 1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\gamma = -1$ $\beta = 2$	ml	5	Solution
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		p = 2	AIF	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2(-)	lotal	M 1	3	
$y = -\frac{1}{2}gt^{2} + 10t$ $t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right)$ $y = -\frac{g}{8}x^{2} + 5x$ (b) $1 = -\frac{g}{8}x^{2} + 5x$ $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ M1 $x = 3.871, 0.211$ Distance = 3.66 m M1 A1	2(a)	x = 2l	IVI I		
$t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right)$ $y = -\frac{g}{8}x^{2} + 5x$ (b) $1 = -\frac{g}{8}x^{2} + 5x$ $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ M1 $x = 3.871, 0.211$ Distance = 3.66 m M1 A1 A1 A1 A1 A1 A1 for both answers		$y = -\frac{1}{2}gt^2 + 10t$	M1		
$t = \frac{x}{2}$ $y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right)$ m1 $y = -\frac{g}{8}x^{2} + 5x$ A1 A1 A A G (b) $1 = -\frac{g}{8}x^{2} + 5x$ M1 $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ M1 $x = 3.871, 0.211$ Distance = 3.66m A1 A A A A A A A A A A A A A A A A A A		2			
$y = -\frac{1}{2}g\left(\frac{x}{2}\right)^{2} + 10\left(\frac{x}{2}\right) \qquad \text{m1}$ $y = -\frac{g}{8}x^{2} + 5x \qquad \text{A1} \qquad 4 \qquad \text{AG}$ $(b) \qquad 1 = -\frac{g}{8}x^{2} + 5x \qquad \text{M1}$ $gx^{2} - 40x + 8 = 0 \qquad \text{M1}$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g} \qquad \text{M1}$ $x = 3.871, \ 0.211 \qquad \text{A1} \qquad \text{A1} \qquad \text{A1 for both answers}$ 2.66		$t = \frac{x}{2}$			
$y = -\frac{1}{2}g\left(\frac{x}{2}\right) + 10\left(\frac{x}{2}\right)$ $y = -\frac{g}{8}x^{2} + 5x$ (b) $1 = -\frac{g}{8}x^{2} + 5x$ $gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ $x = 3.871, \ 0.211$ Distance = 3.66 m A1		$\frac{1}{1}(r)^2(r)$			
(b) $\begin{aligned} y &= -\frac{g}{8}x^2 + 5x \\ gx^2 - 40x + 8 &= 0 \\ x &= \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g} \\ x &= 3.871, \ 0.211 \\ \text{Distance} &= 3.66 \text{ m} \end{aligned}$ A1 A1 A AG A1 A AG A1 A AG A1 A A A A A		$y = -\frac{1}{2}g\left(\frac{x}{2}\right) + 10\left(\frac{x}{2}\right)$	m1		
(b) $ \begin{cases} y = \frac{g}{8}x^{2} + 5x \\ 1 = -\frac{g}{8}x^{2} + 5x \\ gx^{2} - 40x + 8 = 0 \\ x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g} \\ x = 3.871, \ 0.211 \\ \text{Distance} = 3.66 \text{ m} \end{cases} $ M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		$y = -\frac{g}{2}r^2 + 5r$	Δ 1	1	AG
(b) $1 = -\frac{g}{8}x^2 + 5x$ $gx^2 - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m 2.66 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		$y = \frac{1}{8}x + 5x$	211	-	
(b) $1 = -\frac{s}{8}x^2 + 5x$ $gx^2 - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m 2.66 M1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A		σ			
$gx^{2} - 40x + 8 = 0$ $x = \frac{40 \pm \sqrt{(-40)^{2} - 4 \times 8g}}{2g}$ M1 A1 A1 for both answers Distance = 3.66 m A1 A1 A1 A1	(b)	$1 = -\frac{8}{8}x^2 + 5x$	M1		
$x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ x = 3.871, 0.211 Distance = 3.66 m A1 A1 A1 A1 A1 A1 A1 A		$gx^2 - 40x + 8 = 0$			
$x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2g}$ $x = 3.871, 0.211$ Distance = 3.66 m A1 A1 A1 A1 A1 A1 for both answers A1 A1 A1		$40 \pm \sqrt{(40)^2 + 4 \times 8 \pi}$			
$\begin{array}{ c c c c c } & 2g \\ x = 3.871, \ 0.211 \\ \text{Distance} = 3.66 \text{ m} \end{array} \qquad $		$x = \frac{40 \pm \sqrt{(-40)^2 - 4 \times 8g}}{2}$	M1		
$\begin{array}{c c} x = 3.871, \ 0.211 \\ \text{Distance} = 3.66 \text{ m} \end{array} \qquad \begin{array}{c c} A1 \\ A1 \\ A1 \end{array} \qquad \begin{array}{c c} A1 \\ A1 \\ A1 \end{array} \qquad \begin{array}{c c} A1 \\ A1 \end{array} \qquad \begin{array}{c c} A1 \\ A1 \end{array}$		2g			
Distance = 3.66 m A1 4		$x = 3.871, \ 0.211$	A1		A1 for both answers
		Distance $= 3.66 \mathrm{m}$	A1	4	
100		3 66			
(c) $t = \frac{5.00}{2}$ M1	(c)	$t = \frac{3.00}{2}$	M1		
t = 1.83 sec A1 2		t = 1.83 sec	A1	2	
Total 10		Total		10	

<u>MM03 (cont)</u>

Q	Solution	Marks	Total	Comments
3(a)	$v_{\rm E} = \sqrt{4^2 + 2^2}$	M1		
	r r			
	= 4.47 m s ⁻¹ or $2\sqrt{5} m s^{-1}$ or $\sqrt{20} m s^{-1}$	A1		
	$\theta = \tan^{-1} \frac{2}{2}$	M1		
	4			
	$\theta = 26.6^{\circ}$ Bearing $= 40^{\circ} \pm 180^{\circ} = 26.6^{\circ}$	AIF		
	-103°	A 1 E	5	
	Alternative.	АІГ	3	
	Comp. due west = $4 \sin 40^\circ - 2 \sin 50^\circ = 1.04 \text{ ms}^{-1}$			
	Comp. due south = $2\cos 50^\circ + 4\cos 40^\circ = 4.35 \text{ ms}^{-1}$	(M1)		OE; resolving in two directions
	$_{\rm p}v_{\rm F} = \sqrt{1.04^2 + 4.35^2} = 4.47 \ {\rm ms^{-1}}$	(A1)		
	$\theta = \tan^{-1} \frac{1.04}{4.35}$ or $\tan^{-1} \frac{4.35}{1.04}$	(M1)		
	$\theta = 13.4^{\circ} \text{ or } 76.6^{\circ}$	(A1F)		
	Bearing = $13.4^{\circ} + 180^{\circ}$ or $270^{\circ} - 76.6^{\circ}$			
	= 193°	(A1F)		
	Alternative:			
	Correct triangle	(M1)		Any orientation
	$_{P}v_{E} = \sqrt{1.04^{2} + 4.35^{2}} = 4.47 \mathrm{ms}^{-1}$	(A1)		
	Rel. Vel. Triangle angle 26.6° or 63.4°	(A1)		
	Bearing	(M1)		
	$= 40^{\circ} + 180^{\circ} - 26.6^{\circ} \text{ or } 63.4^{\circ} + 40^{\circ} + 90^{\circ}$			
	=193°	(AIF)		
(b)(i)	$v_{\rm F} = v_{\rm P} + {}_{\rm P}v_{\rm F}$			
	$\sin \alpha _ \sin 140^{\circ}$	M1A1		
	$\frac{1}{2}$ $\frac{1}{4}$	WITAI		
	$\alpha = 18.7^{\circ}$	A1F		
	Bearing = $90^{\circ} + 18.7^{\circ}$	A 1E	4	
	= 109 Alternative:	AIF	4	
	$2\sin 40^\circ = 4\sin \alpha$	(M1)		
	$\alpha = \sin^{-1}\left(\frac{1}{2}\sin 40^\circ\right)$	(A1)		
	$\alpha = 18.7^{\circ}$	(A1F)		
	Bearing = 109°	(A1F)		

MINIUS (cont				
Q	Solution	Marks	Total	Comments
3(b)(ii)	$\beta = 180^{\circ} - (140^{\circ} + 18.7^{\circ})$	B1F		
	$= 21.3^{\circ}$			
	$\underline{}_{P} v_{F} \underline{} - \underline{} 4 \underline{}$	M1		
	$\sin 21.3^{\circ}$ sin 140°	1011		
	$_{\rm P}v_{\rm F} = 2.2568{\rm ms^{-1}}$	A1F		
	1500			
	$t = \frac{1}{2.2568}$			
	= 665 sec	A1F	4	
	Alternative:			o.e. resolving in two directions
	$_{\rm F}v_{\rm P} = 4\cos 18.7 - 2\cos 40 = 2.2568$	(M1)		
	1500	(A2,1,0)		
	$t = \frac{1500}{22568} = 665 \text{ sec}$	(A1F)		
	2.2368			
(iii)	No cross wind, calm lake instantaneous	B1	1	Any sensible assumption
()	change of direction by the patrol boat	2.	1	
	Total		14	
	4			
4(a)	$I = \int (t^3 + t) dt$	M1		
	Ő			
	$-\left[\frac{1}{t^4}+\frac{1}{t^2}\right]^4$	m1		
	$= \left\lfloor \overline{4}^{\iota} + \overline{2}^{\iota} \right\rfloor_{0}$	111.1		
	= 72 N s	A1	3	
(h)	72 = 0.5v - 0.5(0)	M1		Condone $-5(0)$
	v = 144	A1F	2	
			-	
	Т			
(c)	$\int (t^3 + t) \mathrm{d}t = 0.5(12) - 0.5(0)$	M1		Condone $-5(0)$
	$\left \frac{1}{-t^4} + \frac{1}{-t^2} \right ^2 = 6$			
	$\lfloor 4 2 \rfloor_0$			
	$T^4 + 2T^2 - 24 = 0$	A1		
	$-2\pm\sqrt{2^2-4(1)(-24)}$			
	$T^{2} = \frac{1}{2(1)}$	m1		
		A1F		
	or $(T^2 - 4)(T^2 + 6) = 0$			
	$T^{2} = 4$			
	T=2	A1F	5	
	Total		10	

	~		m -	~
Q	Solution	Marks	Total	Comments
5(a)	Momentum of B perpendicular to the			
	line of centres is unchanged			
	$m_B v \sin 40^\circ = 3m_B$	MIAI		
	$v = 4.667 \text{ ms}^{-1} = 4.67 \text{ ms}^{-1} (3\text{sf})$	A1	3	AG
	$4.67\cos 40^\circ$			
(b)	e = 1000000000000000000000000000000000000	M1A1		
	e = 0.826	A1F	3	
(c)	Impulse on $A =$ change in momentum of			
(0)	<i>A</i> along the line of centres			
	$= 0.5 \times 5 \cos 30^\circ = 2.165$	M1 A 1		
	$-0.5 \times 500550 - 2.105$		2	
	= 2.17 INS	AI	3	AG
(d)	$2.165 = m_B (4.667) \cos 40^\circ$	M1A1		
	$m_B = 0.6056 = 0.606 \text{ kg} (3 \text{ sf})$	A1F	3	Condone use of premature rounding giving
				0.605kg or 0.607 kg
	Total		12	
6(a)	$5mu + 7mu = mv_A + 7mv_B$	M1A1		Allow consistent use of positive or negative sign for v
	12			
	$12u = v_A + i v_B$			
	$e = \frac{-v_A + v_B}{Au}$	M1		
	$-v + v = \Delta e u$			
	$8v_{B} = 12u + 4eu$	m1		
		111.1		
	$v_B = \frac{\alpha}{2}(e+3)$	A1	5	AG
(b)	$v_A = \frac{u}{2}(e+3) - 4eu$	M1		
	2			
	$v_A = \frac{u}{2}(3 - 7e)$	A1F		
	$\frac{u}{2}(3-7e) < 0$	M1		
	2^{-1}			
	3 - 1e < 0			
	$e > \frac{3}{7}$	A1	4	AG
	/			
	$w = \frac{u}{(e+3)}$	M1		
	$n_B = \frac{1}{4}$	1411		
	$\frac{u}{2}(7e-3) < \frac{u}{4}(e+3)$	M1		
	2 - 4 2(7e-3) < e+3			
	13e < 9	m1		
	9		4	
	$e < \frac{13}{13}$	Al	4	AG
	Total		13	

MM03 (cont	MM03 (cont)						
Q	Solution	Marks	Total	Comments			
7(a)	$y = 10t\sin 40^\circ - \frac{1}{2}gt^2\cos 30^\circ$	M1A1					
	$y=0 \implies t = \frac{20\sin 40^\circ}{g\cos 30^\circ}$	A1	3	AG			
(b)	$\dot{x} = 10\cos 40^\circ + g\sin 30^\circ \left(\frac{20\sin 40^\circ}{g\cos 30^\circ}\right)$	M1					
	$\dot{x} = 15.08 \text{ ms}^{-1}$	A1					
	$\dot{y} = 10\sin 40^\circ - g\cos 30^\circ \left(\frac{20\sin 40^\circ}{g\cos 30^\circ}\right)$	M1					
	$\dot{y} = -6.427 \text{ ms}^{-1}$	A1	4	Allow 3 sf			
(c)	\dot{x} will be unchanged	B1					
	Rebound $\dot{y} = 6.427 \times 0.5 = 3.214$	M1		Allow using 3 sf			
	Rebound speed = $\sqrt{15.08^2 + 3.214^2}$	ml					
	$=15.4 \text{ ms}^{-1}$	A1F	4				
	Total		11				
	TOTAL		75				

PMT

Version 1.0

JA/

General Certificate of Education June 2010

Mathematics

MM03

Mechanics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM03				
Q	Solution	Marks	Total	Comments
1	LT^{-1}	B1		For dimensions of <i>u</i>
	$LT^{-1} = M^{\alpha}L^{\beta}T^{\gamma} \times L^{3} \times ML^{-3} \times LT^{-2}$	M1 A1		M1 for equation with five components
	$1 = \beta + 1$			
	$-1 = \gamma - 2$			
	$0 = \alpha + 1$	m1		Forming and solving
	$\theta \rightarrow \alpha + 1 + 1$			equations (PI)
	$p = 0, \ \alpha = -1, \ \gamma = 1$		_	
	The dimensions of C are $M^{-1}T$	AIF	5	
	Alternative :			
	LT^{-1}	(B1)		For dimensions of <i>u</i>
	$LT^{-1} = C \times L^3 \times ML^{-3} \times LT^{-2}$	(M1A1)		M1 for equation with five components
	$LT^{-1} = C \times LMT^{-2}$	(m1)		
	The dimensions of C are $M^{-1}T$	(A1F)	5	
	Total		5	
2(a)(i)	$x = 80\cos\theta. t$	B1		
	$t - \underline{x}$			
	$r = \frac{1}{80\cos\theta}$	B1		
	$v = 80\sin\theta t - \frac{1}{2}\alpha t^2$			
	2^{st}	B1		
	$y = 80\sin\theta \frac{x}{100} - \frac{1}{2}g(\frac{x}{1000})^2$	M1		
	$80\cos\theta = 2 - 80\cos\theta$	IVI I		
	$y = x \tan \theta - \frac{gx^2}{(1 + \tan^2 \theta)}$	A 1	5	A norman airran
	12800	AI	5	Answer given
(;;)	a a 100 ²			
(II)	$-20 = 400 \tan \theta - \frac{9.8 \times 400^2}{12000} (1 + \tan^2 \theta)$	M1		Condone $+ 20$
	12800			
	$122.5 \tan \theta - 400 \tan \theta + 102.5 = 0$	A 1	2	A
	$49\tan^2\theta - 160\tan\theta + 41 = 0$	AI	2	Answer given
(b)(1)	$tan\theta = \frac{160 \pm \sqrt{25600 - 4(49)(41)}}{100}$	M1		
	2×49	1011		
	= 2.9850, 0.2803	A1		PI
	$\theta = 71.5^{\circ}, 15.7^{\circ}$	AIF	3	
(ii)	For the shortest time			
(11)	$400 = 80\cos 15.7^{\circ}.t$	M1		
	t = 5.19	AIF	2	
			-	
(c)	• The projectile is a particle			
(-)	• The air resistance is negligible	E1	1	
	Total		13	

MM03 (cont)

Q	Solution	Marks	Total	Comments
3 (a)	C.L.M. (1) $3u = (1)v_A + (3)v_B$	M1 A1		M1 for three non-zero terms
	Restitution :			
	$\frac{1}{3} \times 3u = v_B - v_A$	M1 A1		Accept $v_A - v_B$
	$v_B = u$	m1		Solution
	$v_A = 0$	A1	6	A1 for both answers
	CIM			
(U)	$\begin{array}{c} C.L.W.\\ 3u - 3w + rw \end{array}$	M1 A1		
	$Su = Sw_B + Aw_c$ Restitution :			
	$\frac{1}{3}u = w_c - w_B$	M1 A1		
	$w_c = \frac{4u}{3+x}$	m1		Solution attempt, dep. on both M1s AG
	$u(9-x) \qquad \text{OF}$			
	$w_B - \frac{1}{3(3+x)} \qquad \text{OE}$	A1	6	A1 for both
(c)	For further collision $\frac{u(9-x)}{3(3+x)} < 0$	M1		
	x > 9	A1	2	AG
(d)	<i>Au</i>			
(u)	$I = 5\left(\frac{4u}{3+5}\right)$	M1		
	$I = \frac{5u}{2}$	A1	2	
	Alternative:			
	$I = 3u - 3 \times \frac{u(9-5)}{3(3+5)}$	(M1)		
	$I = \frac{5u}{2}$	(A1F)		Accept $-\frac{5u}{2}$
	~	()		2 Follow through on their w
	Total		16	
	Total		10	

MM03 (con	t)			
Q	Solution	Marks	Total	Comments
4 (a)	$r_A = (-60\mathbf{i} + 30\mathbf{k}) + (250\mathbf{i} + 50\mathbf{j} - 100\mathbf{k})t$	M1		For correct form
	$r_{\rm p} = (-40\mathbf{i} + 10\mathbf{j} - 10\mathbf{k}) + (200\mathbf{i} + 25\mathbf{j} + 50\mathbf{k})t$	A1.2	3	A1 for each
			5	
(b)	$_{B}r_{A} = [(-60\mathbf{i} + 30\mathbf{k}) + (250\mathbf{i} + 50\mathbf{j} - 100\mathbf{k})t] -$	M1		Attempt at the difference using their
				answers
	$[(-40\mathbf{i}+10\mathbf{j}-10\mathbf{k})+(200\mathbf{i}+25\mathbf{j}+50\mathbf{k})t]$			
	$_{R}r_{A} = (-20+50t)\mathbf{i} + (-10+25t)\mathbf{j} + (40-150t)\mathbf{k}$	A1	2	AG
(c)	For collision			
	$(-20+50t)\mathbf{i} + (-10+25t)\mathbf{j} + (40-150t)\mathbf{k} = 0$	M1		
	$20 + 50t = 0 \implies t = \frac{2}{3}$			
	$-20+30l=0 \implies l=-\frac{1}{5}$			
	$-10+25t=0 \implies t=\frac{2}{2}$	m1		
	5	A1F		
	$40-150t=0 \implies t=\frac{4}{15}$			
	The relative position vector cannot be zero.			
	Therefore A and B do not collide	E1	4	
			-	
(d)	$S^{2} = (-20+50t)^{2} + (-10+25t)^{2} + (40-150t)^{2}$	M1A1		
	For minimum <i>S</i>			
	$\frac{dS^2}{dt} = 100(-20+50t) + 50(-10+25t) - 100(-10+25t) - 100(-1$			
	dt	M1		
	300(40 - 150t) = 0	A1F		
	51250t - 14500 = 0 t = 0.283		6	Solution
	<i>i</i> = 0.205		15	
	lotal		15	
	Alternative:			
	$\begin{pmatrix} -20+50t \\ 10+25t \end{pmatrix} \begin{pmatrix} 50 \\ 25 \end{pmatrix} = 0$	(M1)		
	$\begin{vmatrix} -10+25t \\ 40-150t \end{vmatrix} = 0$	(A1)		
	-1000 + 2500t - 250 + 625t - 6000 + 22500t - 0	(m1)		
	1000+2500 250+0251 0000+225001-0	(A1F)		
	25625t - 7250 = 0	(A1F)		
	t = 0.283	(A1F)		

6

MM03 (cont)

Q	Solution	Marks	Total	Comments
5(a)	Parallel to the wall			
	$4\cos\alpha = v\cos 40^{\circ}$	M1		Correct trigonometric ratios
	Perpendicular to the wall			
	$v\sin 40^\circ = \frac{2}{3} \times 4\sin \alpha$	M1		Correct trigonometric ratios
	$\tan \alpha = \frac{3}{2} \tan 40^{\circ}$	A1	3	AG
(b)	$\alpha = 51.5^{\circ}$	M1		
	$v = \frac{4\cos 51.5^{\circ}}{\cos 40^{\circ}}$	M1		
	$v = 3.25 \text{ ms}^{-1}$	A1	3	OE
	Total		6	
6(a)	The spheres are smooth, no force acting in	E1	1	Any valid reason
	j direction			
(b)	$v_A = a\mathbf{i} + b\mathbf{j}$			
	$v_{\rm B} = c\mathbf{i} + d\mathbf{j}$			
	C.L.M. along i: $1(2) + 2(-1) = 1(a) + 2(c)$ a+ 2c- 0	M1A1		
	Restitution along i : $c - a = 0.5(2 - (-1))$	M1A1		
	c - a = 1.5			
	c = 0.5 a = -1			
	$v_A = -\mathbf{i} + 3\mathbf{j}$	A1F		
	$v_B = 0.5\mathbf{i} - 2\mathbf{j}$	A1F	6	
	Total		7	

MM03 (cont			<u> </u>	2
Q	Solution	Marks	Total	Comments
7(a)	On striking A:			
7(a)	$20\sin 30^{\circ} \cdot t - \frac{1}{2}(9.8)\cos 35^{\circ} \cdot t^2 = 0$	M1A1		
	t = 2.49	A1		AWRT OE
	Components of Velocity :			
	$u_x = 20\cos 30^\circ - 9.8\sin 35^\circ (2.49)$	M1		
	$u_x = 3.32$	A1F		AWRT
	$u_y = 20\sin 30^\circ - 9.8\cos 35^\circ (2.49)$	M1		
	$u_y = -10$ (or -9.99)	A1F	7	
(b)	On Rebounding			
(~)	$v_x = 3.32$			
	$v_{y} = \frac{4}{2} \times 10$	B1F		For $\frac{4}{2}$ × their u_{y}
	y = 5 y = 8 (or 7.99)			5 ,
	The rebound angle = $\tan \frac{1}{3.32}$	M1		
	$= 67.5^{\circ} (\text{ or } 67.4^{\circ})$	A1F		
	$35^{\circ} + 67.5^{\circ} = 102.5^{\circ}$	M1 A1F		
	$102.5^{\circ} > 90^{\circ}$, therefore the second strike			
	will be at a point lower down than A.	E1	6	Dependent on the two M1s
	Alternative.			
	$\frac{4}{10-8}$	(P 1)		Condona nagativa sign
	5	(B1)		Condone negative sign
	$0 = 8t - \frac{1}{2}g\cos 35.t^2$	(M1)		
	t = 1.9931	(A1)		OE
	$x = 3.32t - \frac{1}{2}g\sin 35.t^2$	(M1)		
	x = -4.55 or -4.56	(A1)		
	The second strike will be at a point lower			
	down than A.	(E1)		
	Total		13	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MM03

(Specification 6360)

Mechanics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

0	Solution	Marks	Total	Comments
<u> </u>	$\frac{1 - 0}{1} \frac{2}{3} \frac{2}{3} + 0 \frac{2}{3} \frac{18}{3}$	M1	10001	Comments
I (a)	I = 0.2(32) + 0.2(10) I = 10 Ns	A1	2	Condone +10
	1 - 10 105	111	2	
(b)	$\int_{0.09}^{0.09} L(0.01, 10)^2 L(0.10)^2 L(0.10)$			
	$\int_{0}^{\infty} k(0.9t-10t) dt = 10$	M1		Condone limits
	$\begin{bmatrix} 10 & 10 \end{bmatrix} = \begin{bmatrix} 10 & 0 \end{bmatrix}^{0.09}$			
	$k \left 0.45t^2 - \frac{10}{2}t^3 \right = 10$	A1F		Condone limits
	$1.215 \times 10^{-3} k = 10$	m1		For substituting 0.09
	<i>k</i> = 8230	A 1 E	4	C C
		АІГ	4	
			6	
2	$\mathbf{T}^{1} = \mathbf{I}^{\alpha} (\mathbf{M} \mathbf{T}^{-2})^{\beta} (\mathbf{M}^{-1})^{\gamma}$	Μ1 Δ1	0	
2	I = L (MLI)' (ML)'	WII AI		
	$\alpha + \beta - \gamma = 0$			
		m1		Getting three equations
	$p + \gamma = 0$			
	$-2\beta = 1$			
	$\beta = -\frac{1}{2}$			
	$p = -\frac{1}{2}$	m1		
	1	A1F	5	Solution
	$\gamma = \frac{1}{2}$			
	$\alpha = 1$			
			5	

MM03

Q	Solution	Marks	Total	Comments
3 (a)	$x = 40\cos\theta.t$	M1		
	$y = -\frac{1}{2}(10)t^2 + 40\sin\theta t$	M1 A1		
	$y = -\frac{1}{2}(10)(\frac{x}{40\cos\theta})^2 + 40\sin\theta.(\frac{x}{40\cos\theta})$	m1		Dependent on both M1s
	$y = -\frac{x}{320\cos^2\theta} + x\tan\theta$			
	$320y = -x^{2}(1 + \tan^{2}\theta) + 320x \tan\theta$ $x^{2} \tan^{2}\theta - 320x \tan\theta + (x^{2} + 320y) = 0$	m1 A1	6	Answer Given (Condone missing brackets)
(b)(i)	$150^{2} \tan^{2} \theta - 320(150) \tan \theta + (150^{2} + 320 \times 8) = 0$ 1125 \tan^{2} \theta - 2400 \tan \theta + 1253 = 0	M1 A1		Correct quadratic
	$\tan\theta = \frac{2400 \pm \sqrt{2400^2 - 4(1125)(1253)}}{2(1125)}$	m1		
	$\tan\theta = 1.22$, 0.912	A1F		PI
	θ = 50.7°, 42.4°	A1F	5	
(b)(ii)	$\theta = 42.4^{\circ}$	B1F		For the smaller angle
	$t = \frac{150}{40\cos\theta}$ and $\cos 42.4 > \cos 50.7$	E1	2	OE
			13	

Q	Solution	Marks	Total	Comments
4 (a)	$u_A = \frac{(-2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k})140}{\sqrt{(2)^2 + (3)^2 + (6)^2}} = -40\mathbf{i} + 60\mathbf{j} + 120\mathbf{k}$	M1 A1		Simplification not needed
	$u_B = \frac{(2\mathbf{i} - \mathbf{j} + 2\mathbf{k})60}{\sqrt{(2)^2 + (1)^2 + (2)^2}} = 40\mathbf{i} - 20\mathbf{j} + 40\mathbf{k}$	A1		Simplification not needed
	$_{A}u_{B} = (-40\mathbf{i} + 60\mathbf{j} + 120\mathbf{k}) - (40\mathbf{i} - 20\mathbf{j} + 40\mathbf{k})$ = $-80\mathbf{i} + 80\mathbf{j} + 80\mathbf{k}$	M1 A1F	5	Subtracting <i>B</i> from <i>A</i>
(b)	${}_{A}r_{B} = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) - (-3\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}) + t(-80\mathbf{i} + 80\mathbf{j} + 80\mathbf{k})$	M1 A1F	2	A difference of initial p.v. $+ t \times_A u_B$
	or $(71-8j)+t(-80i+80j+80k)$			
(c)	$_{A}r_{B} = (7 - 80t)\mathbf{i} + (-8 + 80t)\mathbf{j} + (80t)\mathbf{k}$	B1F		
	$s^{2} = (7 - 80t)^{2} + (-8 + 80t)^{2} + (80t)^{2}$	B1F		
	$2s\frac{\mathrm{d}s}{\mathrm{d}t} = 2(7-80t)(-80) + 2(-8+80t)(80) + 2(80t)(80) = 0$	M1 A1F		Differentiation
	240t = 15	m1		Solving
	$t = 0.0625$ or $\frac{1}{16}$	A1F		
	$s^{2} = (7 - 80 \times 0.0625)^{2} + (-8 + 80 \times 0.0625)^{2} + (80 \times 0.0625)^{2}$	M1		
	$s = 6.16$ km or $\sqrt{38}$ km	A1F	8	
			15	
	<u>Alternative</u> (Not in the specification) A and B are closest $\Rightarrow {}_{A}\mathbf{r}_{B} \cdot {}_{A}\mathbf{v}_{B} = 0$ [$(7-80t)\mathbf{i} + (-8+80t)\mathbf{j} + (80t)\mathbf{k}$] . [$-80\mathbf{i} + 80\mathbf{j} + 80\mathbf{k}$] = 0 -80(7-80t) + 80(-8+80t) + 80(80t) = 0 240t = 15 t = 0.0625	B1 M1 A1 A1 M1 A1		

Q	Solution	Marks	Total	Comments
5 (a)	$v^2 = u^2 + 2as$			
	$v^2 = 0^2 + 2(9.8)(2.5)$	M1		
	<i>v</i> = 7	A1	2	
(b)(i)	$\frac{W}{W} = e$	M1		
	7			
	w = /e			
	$0 = 7et - \frac{9.8}{2}t^2$ or $(0 = 7e - 9.8t)$	M1		
	10e 7e			
	$t = \frac{1}{7} \qquad (t = 2 \times \frac{1}{9.8})$	Al	3	Answer given
(ii)	$w' = 7e^2$			
	$0 = 7e^2 t' - \frac{9.8}{2}t'^2$			
	2			
	$t' = \frac{10e^2}{7}$	D 1	1	
		BI	1	OE
(c)	$0^2 = (7e)^2 + 2(-9.8)h_2$	M1		Or for correct method to find h_4
	$h_{2} = 2.5e^{2}$			+
	$h_{\rm c} = 2.5e^2$	A1		
	$0^2 = (7e^2)^2 + 2(-9.8)h.$			
	$h = 2.5e^4$	Δ1		
	$h_4 = 2.5c^4$	711		
	$n_5 = 2.5e$ Total distance $2.5 \pm 2(2.5 e^2) \pm 2(2.5 e^4)$	m1		
	$10tat distance = 2.5 + 2(2.5e^{-1}) + 2(2.5e^{-1})$	1111		
	$= 2.5 + 5e^2 + 5e^4$	A1	5	
	Alternative (not in the specification) KE after each house $= e^2 \times KE$ before the house			
	K.e. alter each bounce $=e \times K.e.$ before the bounce			
	P.E. at max. height after each bounce =			
	$e^2 \times P.E.$ at max. height before the bounce	(M1)		
	Height after first bounce = $2.5e^2$	(A1)		
	Height after second bounce = $2.5e^4$	(A1)		
	Total = $2.5 + 2(2.5e^2 + 2(2.5e^4))$	(m1)		
	$= 2.5 + 5e^2 + 5e^4$	(A1)		
<u> </u>				
(d)	Motion in vertical line,			
	No air resistance,	B1	1	
	No energy loss,			
	Instantaneous bounce			
			12	

Q	Solution	Marks	Total	Comments
6 (a)	Perpendicular to the plane:			
	$y = -\frac{1}{2}gt^2\cos 20 + ut\sin 30$	M1		
	$0 = -4.9t^2 \cos 20 + ut \sin 30$	M1		
	$2u\sin 30$			
	$t = 0.108589568u$ or $\frac{1}{g \cos 20}$	A1		
	Denallal to the plana.			
	Paranel to the plane:			
	$x = -\frac{1}{2}gt^2\sin 20 + ut\cos 30$	M1		
	$200 = -4.9(0.108589568u)^2 \sin 20 +$	m1		
	<i>u</i> (0.108589568 <i>u</i>)cos30	1111		
	$u^2 = 2693$	A1F		
	u = 51.9 or 51.894	A1F	7	Do not accept $\sqrt{2693}$
(b)	$\dot{y} = -gt\cos 20 + u\sin 30 = 0$	M1		
	51.9sin30			Accent 3 significant fig
	$t = 2.817899$ or 2.817580214 or $g \cos 20$	AlF		Accept 5 significant fig.
	The greatest \perp distance =			
	$\frac{1}{10000000000000000000000000000000000$			
	$9.8(2.817899)^{-}\cos 20+51.9(2.817899)\sin 30$ or 2	m1		
	$-\frac{1}{9.8}(\frac{51.894\sin 30}{\cos 20})^2\cos 20+51.9(\frac{51.894\sin 30}{\cos 20})\sin 30$			
	2 9.800520 9.800520			
	= 36.5622 m or 36.5538			
	= 36.6 3sf	A1F	4	
			11	
6 (a)	Alternative:			
	$x = 200 \cos 20$	B1		
	$y = 200 \sin 30$ 200 cos 20 = $\mu \cos 50t$	BI		
	20000520 - 4005307	1/11		
	$t = \frac{252.4}{\mu}$	A1		
	$200\sin 30 = \frac{1}{2}(-9.8)(\frac{292.4}{u})^2 + u\sin 50(\frac{292.4}{u})$	M1		
	$u^2 = 2693$	A1		
	u = 51.9	A1		
(b)	Altomativa			
(0)	Anternative: $0 - (u \sin 30)^2 - 2 a \cos 20 s$	M1		
	$(51.0 \sin 30)^2$	1111		
	$s = \frac{(31.981130)}{2(9.8)\cos 20}$	m1A1		
	s = 36.6	A1		

Q	Solution	Marks	Total	Comments
7 (a)	Momentum of A is unchanged \perp to the			
	line of centres $4mu\sin 30 - 4mv\sin \alpha$	M1		
	$-4mv_A \sin \alpha$	1011		
	$v_A = \frac{\alpha}{2\sin\alpha} \qquad \dots $	A1		
	C.L.M.:	N / 1 A 1		
	$4mu\cos 30 = 4mv_A\cos\alpha + 3mv_B$	MIAI		
	$2\sqrt{3}u = 4v_A \cos\alpha + 3v_B \qquad \dots $	A1F		OE
	Restitution along the line of centres:			
	$\frac{v_B - v_A \cos \alpha}{2 \alpha} = \frac{5}{\alpha}$	M1A1		
	$u\cos 30$ 9			
	$v_B = v_A \cos \alpha + \frac{5\sqrt{3}u}{18} \qquad \dots $	B 1		Or equivalent, could be in part (b)
	10	DI		
	$2\sqrt{2}$, u $2\sqrt{3}u$ $15\sqrt{3}u$			Solving (1) (2) and (3)
	$2\sqrt{3}u = 4\frac{\cos\alpha + 3}{2\sin\alpha}\frac{\cos\alpha + 3}{2\sin\alpha}\frac{\cos\alpha + -18}{18}$	m1		Dependent on three M1s
	$\frac{7\sqrt{3}}{6} = \frac{7}{2\tan \alpha}$			
	$\sin \alpha = \sqrt{3}$			
	π	4.15	10	
	$\alpha = 60$ of $\frac{1}{3}$	AIF	10	
(b)	Impulse on $P = Change in momentum of$			
(0)	B along the line of centres			
	$v = \frac{u}{\cos 60} + \frac{5\sqrt{3}u}{\sin 2}$			
	$v_B = 2\sin 60$ 18			
	$v_{B} = \frac{u}{\sqrt{2}} + \frac{5\sqrt{3}u}{12} \qquad (=\frac{4\sqrt{3}}{2})$	M1		
	$2\sqrt{3}$ 18 9			
	$I = 3m(\frac{u}{2\sqrt{3}} + \frac{5\sqrt{3}u}{18}) - 3m(0)$	M1		
	$I = \frac{4mu}{\alpha}$ or 2.31mu	Δ1F	3	
	$\sqrt{3}$ or 2.5 mm		5	
	TOTAL		13	
	TUTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MM03

(Specification 6360)

Mechanics 3

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MM03				
Q	Solution	Marks	Total	Comments
1(a)	$I = \int_{0.5}^{0.5} 4 \times 10^4 t^2 (1 - 2t) \mathrm{d}t$	M1		Attempt to integrate
	J 0	A1		Use of correct limits, PI
	$=4\times10^{4}\left[\frac{1}{3}t^{3}-\frac{1}{2}t^{4}\right]_{0}^{0.5}$	A1F		Correct integration
	$=417$ (or $\frac{1250}{3}$) Ns	A1F	4	Accept 416.6 or 416.7
(b)	$416.\dot{6} = 60v + 60 \times 5$	M1A1F		A1F correct sign
	<i>v</i> = 1.94	A1F	3	AWRT 1.94, accept 1.95 ISW
	Total		7	
2	Dimension of g is LT^{-2}			
	Dimension of s is L			
	Dimension of h is L	B 1		quantities
	Dimension of m_1 and m_2 is M	l		
	Dimension of $\frac{g}{s}[s(m_1 + m_2) + \frac{hm_1^2}{m_1 + m_2}]$ is			
	$\frac{LT^{-2}}{L}[LM + \frac{LM^2}{M}] \cong MLT^{-2} + MLT^{-2}$	M1		Correct substitution of dimensions
	\cong MLT ⁻²	A1		
	which is a force	B1	4	
	Total		4	

MM03				
Q	Solution	Marks	Total	Comments
3 (a)	$x = ut \cos \alpha$	M1		
	$t = \frac{x}{u \cos \alpha}$	A1		
	$y = -\frac{1}{2}gt^2 + ut\sin\alpha$	M1		Must have correct signs
	$y = -\frac{1}{2}g(\frac{x}{u\cos\alpha})^2 + u(\frac{x}{u\cos\alpha})\sin\alpha$	M1		
	$y = -\frac{gx^2}{2u^2\cos^2\alpha} + \frac{x\sin\alpha}{\cos\alpha}$			
	$y = -\frac{gx^2}{2u^2}(1 + \tan^2 \alpha) + x \tan \alpha$	A1		
	$k = -\frac{10(2k)^2}{2u^2}(1 + \tan^2 \alpha) + 2k \tan \alpha$	M1		
	$u^2 = -20k(1 + \tan^2 \alpha) + 2u^2 \tan \alpha$			
	$20k\tan^2\alpha - 2u^2\tan\alpha + u^2 + 20k = 0$	A1	7	AG
(b)	Pass through $P \Longrightarrow$ Discriminant ≥ 0			
	$(-2u^2)^2 - 4(20k)(u^2 + 20k) \ge 0$	M1A1		OE must be seen
	$4u^4 - 80ku^2 - 1600k^2 \ge 0$			
	$u^4 - 20ku^2 - 400k^2 \ge 0$	A1	3	AG
	Total		10	

<u>MM03</u>			1	1
Q	Solution	Marks	Total	Comments
4(a)	1.69m			
	$\theta = \tan^{-1} \frac{1.69}{1.2} = 54.623^{\circ}$	B1		AWRT 55°
	$u\cos 60^\circ = v\cos 54.623^\circ$	M1		v = 0.864u
	$eu\sin 60^\circ = v\sin 54.623^\circ$	M1		
	$e = \frac{v \sin 54.623^{\circ}}{\frac{v \cos 54.623^{\circ}}{\cos 60^{\circ}}} \times \sin 60^{\circ}$	m1		OE, dependent on both M1s
	e = 0.813 or 0.812	A1	5	ISW
(b)	$I = 0.15u \sin 60^\circ + 0.15v \sin 54.623^\circ$	M1A1		Single angle values needed for A1
	$= 0.15u\sin 60^{\circ} + 0.15 \times \frac{u\cos 60}{\cos 54.623^{\circ}} \times \sin 54.623^{\circ}$	m1		
	= 0.236u	A1	4	AG (condone 0.2355 or negative result)
(c)	Attempt at considering motion parallel or perpendicular to AC	M1		
	$t = \frac{1.2}{u\cos 60^{\circ}}$	M1		
	$t = \frac{12}{5u} \qquad \text{or} \frac{2.4}{u}$	A1	3	OE, No ISW
	Alternative: $CP = \frac{1.2}{\cos 54.623^{\circ}}$ (= 2.072703844 m) <u>1.2</u>	(M1)		
	$t = \frac{\cos 54.623^{\circ}}{\frac{u \cos 60^{\circ}}{\cos 54.623^{\circ}}}$	(M1)		
	$=\frac{12}{5u} \text{or} \frac{2.4}{u}$	(A1)	(3)	(OE), No ISW
(d)	Velocity (momentum) parallel to the cushion is unchanged, or, Restitution only affects motion perpendicular to the cushion	E1	1	Accept 'horizontal component of velocity is unchanged'
	Total		13	

MM03- AQA GCE Mark Scheme 2012 June series

Q	Solution	Marks	Total	Comments
5(a)	$0 = 15t \sin 30 - \frac{1}{2}g \cos 25t^2$	M1A1		Accept wrong angle(s) for M1 but not sin and cos in wrong places
	$t = \frac{15\sin 30}{\frac{1}{2}g\cos 25}$	M1		
	t = 1.69 sec.	A1F	4	AWRT 1.69
(b)	\perp to plane $\dot{y} = 15 \sin 30 - g \cos 25 \times \frac{15 \sin 30}{\frac{1}{2}g \cos 25}$	M1		
	$\dot{y} = -7.5$ ms ⁻¹	A1F		Or -7.51 , ft from their
	to plane $\dot{x} = 15\cos 30 - g\sin 25 \times \frac{15\sin 30}{\frac{1}{2}g\cos 25}$	M1		answer in (a)
	$\dot{x} = 5.995766$ or 6.00 ms ⁻¹	A1F		Accept 5.99
	Restitution: Rebound $\dot{y} = \frac{2}{3} \times 7.5 = 5 \text{ ms}^{-1}$	M1		Or 5.01
	\dot{x} unchanged	B1		PI, dependent on the last M1
	Speed of rebound = $\sqrt{5.995766^2 + 5^2}$	m1	8	Dependent on the last
	$= 7.81 \text{ ms}^{-1}$	AIF	0	
	Total		12	

IVIIVIUJ				
Q	Solution	Marks	Total	Comments
6(a)	$v_{A} = 18$ $v_{B} = 10$ A a_{B} a_{B}	B1		For any appropriate diagram PI by correct method
	$\frac{\sin\theta}{10} = \frac{\sin 115^{\circ}}{18}$	M1		
	6 = 30.2	A1		
	Bearing = 035°	A1	4	Accept 034.8°
(b)(i)	$ \begin{array}{c} B \\ 65^{\circ} \\ 65^{\circ} \\ A \\ \end{array} $	B1		For any appropriate diagram PI by correct method
	$_{A}v_{B}^{2} = 18^{2} + 10^{2} - 2(18)(10)\cos 65^{\circ}$ $_{A}v_{B} = 16.4881 \text{ ms}^{-1}$ $\sin 65^{\circ} = \sin 0$	M1 A1		OE
	$\frac{\sin 63}{16.4881} = \frac{\sin 6}{10}$	M1		
	$\theta = 33.3446^{\circ}$	A1F		
	$d = 12 \times \sin 33.3446^{\circ}$	m1		OE
	d = 6.60 km	A1F	7	Dependent on the previous two M1s (AWRT 6.6 km)
(ii)	$t = \frac{12 \times \cos 33.3446^{\circ}}{16.4881} = 0.607987 \text{ hours}$ (= 36.5 min)	M1 A1F A1F	3	Or 0.608 hours LHS values Correct time
	Total		14	

MM03

Q6 (b)(i) Alternative:	
$r_A = [(18\cos 25)\mathbf{i} + (18\sin 25)\mathbf{j}]t$	
$r_{B} = [(12\cos 25)\mathbf{i} + (12\sin 25)\mathbf{j}] + 10\mathbf{j}t$	MI for both
$_{A}r_{B} = (-12\cos 25 + 18t\cos 25)\mathbf{i} + (-12\sin 25 + 18t\sin 25 - 10t)\mathbf{j}$	ml Al
$\left _{A}r_{B}\right ^{2} = (-12\cos 25 + 18t\cos 25)^{2} + (-12\sin 25 + 18t\sin 25 - 10t)^{2}$	A1
$\frac{d _{A}r_{B} ^{2}}{dt} = (36\cos 25)(-12\cos 25 + 18t\cos 25) + (36\sin 25 - 20)(-12\sin 25 + 18t\sin 25 - 10t) = 0$	ml
t = 0.608	A1
d = 6.60 km or $6.6 km$	A1
The corresponding marks awarded for finding the closest approach time:	
$\frac{d _{A}r_{B} ^{2}}{dt} = (36\cos 25)(-12\cos 25 + 18t\cos 25) + (36\sin 25 - 20)(-12\sin 25 + 18t\sin 25 - 10t) = 0$	M1 A1
t = 0.608 (or better)	A1
(b)(i) Alternative (Not in the specification):	
(b)(i) Anternative (100 m the specification).	
$_{A}r_{B} = (-12\cos 25 + 18t\cos 25)\mathbf{i} + (-12\sin 25 + 18t\sin 25 - 10t)\mathbf{j}$	M1 A1
$[(-12\cos 25 + 18t\cos 25)\mathbf{i} + (-12\sin 25 + 18t\sin 25 - 10t)\mathbf{j}] \cdot [(18\sin 65)\mathbf{i} + (18\cos 65 - 10)\mathbf{j}] = 0$	ml
$(-12\cos 25 + 18t\cos 25) (18\sin 65) + (-12\sin 25 + 18t\sin 25 - 10t) (18\cos 65 - 10) = 0$	A1
2/1.85 t = 165.2/ t = 0.608 (or better)	
d = 6.60 km or 6.6 km	A1
The corresponding marks awarded for finding the closest approach time:	
$(-12\cos 25 + 18t\cos 25)$ $(18\sin 65) + (-12\sin 25 + 18t\sin 25 - 10t)$ $(18\cos 65 - 10) = 0$	M1
271.85 t = 165.27	A1
t = 0.608 (or better)	A1
(b)(ii) FT from their answers in part (b)(i)	

MM03				
Q	Solution	Marks	Total	Comments
7(a)	$2m(3i+j) + m(2i-5j) = 2mv_A + m(2i+j)$	M1A1		
	$8i - 3j = 2v_A + (2i + j)$			
	$v_A = 3i - 2j$	A1	3	
(b)	I = m(2i+j) - m(2i-5j)	M1A1		
	I = 6mj	A1	3	AG
(c)	$I = 6mj \implies$ Line of centres along j	B1		PI
	Restitution along j : $1+2=e(5+1)$	M1A1		
	e = 0.5	A1	4	
	Accept energy methods			
(d)	$_{A}v_{B}=i-3j$			
	$_{A}r_{B} = -0.1j + (i - 3j)t$	M1A1		
	$1.1^2 = t^2 + (-0.1 - 3t)^2$	M1		OE
	$10t^2 + 0.6t - 1.2 = 0$			
	$t = -0.6 \pm \sqrt{0.6^2 - 4(10)(-1.2)} \qquad (-0.31770677)$	m1		Dependent on both M1s
	$1 = \frac{1}{2(10)}$ (= 0.31770077)			
	t = 0.318 or 0.317 sec.	A1	5	
	Total		15	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MM03

(Specification 6360)

Mechanics 3

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

0	Solution	Marks	Total	Comments
1	Use of Impulse-momentum principle	M1		$\int_{(0)}^{(T)} (3t+1) \mathrm{d}t = \pm 2(5) \pm 2(1)$
	$\int_{(0)}^{(T)} (3t+1) \mathrm{d}t = 2(5) - 2(1)$	A1		Condone sign error for M1 A1 for all correct
	$\left[\frac{3}{2}t^{2}+t\right]_{(0)}^{(T)}=(8)$	A1		Correct integration, PI by the correct quadratic
	$3T^2 + 2T - 16 = 0$	A1		Correct use of correct limits and rearrangement
	(3T+8)(T-2) = 0 or $T = \frac{-2 \pm \sqrt{4-4(3)(-16)}}{2(3)}$	m1		Solution of their quadratic, correct attempt needed
	$(T = -\frac{8}{3})$ unacceptable, not			
	in the interval $0 \le t \le 3$) <u>$T = 2$</u> $$	A1	6	
	Total		6	
2	$[P] = MLT^{-2}.L.T^{-1} = ML^{2}T^{-3}$	B1		
	$[mgv\sin\theta] = M \cdot LT^{-2} \cdot LT^{-1} = ML^{2}T^{-3}$ $[Rv] = MLT^{-2} \cdot LT^{-1} = ML^{2}T^{-3}$	B1 B1		For correct unsimplified dimensions of quantities
	$\left[\frac{1}{2}mv^3\frac{\sin\theta}{h}\right] = \mathbf{M}\cdot\mathbf{L}^3\mathbf{T}^{-3}\cdot\mathbf{L}^{-1} = \mathbf{M}\mathbf{L}^2\mathbf{T}^{-3}$	B1		
		B1		All simplifications correct
	The formula is dimensionally consistent Total	E1	6	Dependent on the last B1

Q	Solution	Marks	Total	Comments
3 (a)	$r = \mu t \cos \theta$	M1		
5(a)	$x = ut \cos \theta$	IVII		
	$t = \frac{1}{u\cos\theta}$	Al		
	$y = -\frac{1}{2}gt^2 + ut\sin\theta$	M1		Condone $+g$ for M1
	$y = -\frac{1}{2}gt^2 + ut\sin\theta$	A1		
	$y = -\frac{1}{2}g(\frac{x}{u\cos\theta})^2 + u(\frac{x}{u\cos\theta})\sin\theta$	m1		Elimination of t , condone + g for m1
	$y = -\frac{gx^2}{2u^2\cos^2\theta} + \frac{x\sin\theta}{\cos\theta}$			
	$y = -\frac{gx^2}{2u^2}(1 + \tan^2\theta) + x\tan\theta$	A1	6	OE in terms of <i>x</i> , <i>u</i> , <i>g</i> , $\tan \theta$
(b)(i)	$0.5 = -\frac{9.8(5)^2}{2(8)^2}(1 + \tan^2\theta) + 5\tan\theta$	M1		Correctly substituting for x ,
	2(6)			equation of trajectory
		A1		All correct, condone decimal approximation.
	$245\tan^2\theta - 640\tan\theta + 309 = 0$	A1		OE exact quadratic in $\tan \theta$
	$\tan \theta = \frac{640 \pm \sqrt{(-640)^2 - 4(245)(309)}}{2(245)}$	m1		PI by the values of $\tan \theta$
	$\tan \theta = 1.973(004)$, 0.6392(41)			
	$\theta = 63.12^{\circ}$, 32.58°			
	$\theta = 63.1^{\circ}$, 32.6°	A1	5	AG Must see the above or more accurate values
(ii)	$\dot{y} = -9.8(\frac{5}{8\cos 63.1^{\circ}}) + 8\sin 63.1^{\circ}$ OE	M1		Condone +9.8 for M1.
	$(\dot{y} = -6.4035)$			
	$\dot{x} = 8\cos 63.1^{\circ}$	M1		
	$(\dot{x} = 3.6195)$			
	$\tan^{-1}\frac{6.4(035)}{3.6(195)} \ (=61^{\circ}) \ OE$	m1		PI by correct angle in a statement
	Direction : 61° to the horizontal			Have to see "herizontel" or "vertical" or
	or 29° to the vertical	A1	4	diagram
		I		

Q	Solution	Marks	Total	Comments
2 (L)(2)	A 14			
3(D)(11)	Alternative:			
	$\frac{dy}{dt} = -\frac{2gx}{(1+tan^2\theta)+tan\theta}$	(M1)		
	$dx = 2u^2$ (1 + tail 0) + tail 0			
	$=-\frac{2\times9.8\times5}{2}(1+\tan^2 63.1^\circ)+\tan 63.1^\circ$	(A1)		
	=-1.7692			
	$\tan^{-1}(-1.7692) = -60.52368^{\circ}$	(m1)		
	Direction: 61° to the horizontal	(111)		
	or 29° to the vertical	(A1)		
	The hell is a portial or			
(C)	I ne ball is a particle, or No air resistance, or			
	The ball does not spin	B1	1	
	Total		16	
4(a)	$m(4u) + 3m(2u) = mv_A + 3mv_B$	M1 A1		M1 for four correct momentum terms with
				any signs.
	$v_B - v_A$	M1 A1		M1 for correct terms for any signs. A1 for
	$\frac{1}{4u-2u} = e$			all correct.
	$\left(v_A + 3v_B = 10u\right)$			
	$v_{P} - v_{A} = 2ue$			
	$\left(\begin{array}{c} u \\ 4v_B = 2ue + 10u \end{array}\right)$			
	$v_{r} = \frac{u}{(e+5)}$	A 1		OF simplified
		711		OL, simplified
	$\left(v_A = \frac{u}{2}(e+5) - 2ue\right)$			
	<i>u</i> (2 , 5)			
	$v_A = \frac{-(-3e+5)}{2}$	A1	6	OE, simplified
(b)	$e \leq 1 \implies y_{-} \leq \frac{u}{c}(1+5)$			
	$v = 1 \rightarrow v_B = \frac{1}{2} (1 + 3)$	MI		Use of $e \le 1$ (OE) needed FT their v
	$\Rightarrow v_B \leq 5u$	A1	2	
(c)	$u \rightarrow u^2$			
(0)	$(I =) 3m \cdot \frac{\pi}{2}(\frac{2}{3}+5) - 3m \cdot 2u$	M1		M1 for a difference of two momentums
				FT their velocity from part (a)
		A1F		A1F for their 'Final B – Initial B '
	$=\frac{5mu}{100}$ or 2.5mu	A 1	2	
	$-\frac{1}{2}$ or 2.5mu	AI	3	
	Total		11	

Q	Solution	Marks	Total	Comments
5(a)	\perp to plane $y = ut \sin \alpha - \frac{1}{2}gt^2 \cos \theta$	M1		For M1, $\sin \alpha$ and $\cos \theta$ must be in the correct terms but accept + g.
	$y = ut\sin\alpha - \frac{1}{2}gt^2\cos\theta$	A1		r or
	$uT\sin\alpha - \frac{1}{2}gT^2\cos\theta = 0$	m1		Accept $+g$ for m1.
	$u = \frac{Tg\cos\theta}{2\sin\alpha}$	A1	4	OE
(b)	t or $T = \frac{2u\sin\alpha}{g\cos\theta}$	B1		
	$\ \text{ to plane } x = ut \cos \alpha + \frac{1}{2}gt^2 \sin \theta$	M1		For M1, $\cos \alpha$ and $\sin \theta$ must be in the correct terms but accept $-g$.
	$x = ut \cos \alpha + \frac{1}{2}gt^2 \sin \theta$	A1		Elimination of <i>t</i> substituting their
	$\left(OP = \right) u\left(\frac{2u\sin\alpha}{g\cos\theta}\right)\cos\alpha + \frac{1}{2}g\left(\frac{2u\sin\alpha}{g\cos\theta}\right)^2\sin\theta$ $\left(=\frac{2u^2\sin\alpha\cos\alpha}{g\cos\theta} + \frac{2u^2\sin^2\alpha\sin\theta}{g\cos\theta}\right)$	ml		expression into their equation for x .
	$\left(\begin{array}{cc} g\cos\theta & g\cos^2\theta \end{array}\right)$ $-2u^2\sin\alpha(\cos\alpha\cos\theta + \sin\alpha\sin\theta)$			OF single correct fraction in factorized
	$-\frac{g\cos^2\theta}{2\mu^2\sin\alpha\cos(\alpha-\theta)}$	m1		form
	$=\frac{2u\sin(2\cos(u-\theta))}{g\cos^2\theta}$	A1	6	AG Sight of the above line needed
	Total		10	

Q	Solution	Marks	Total	Comments
6	(Let $v_B = a\mathbf{i} - b\mathbf{j}$)			
	$\frac{a}{b} = \frac{3}{2}$	M1		Allow sign error
	$\frac{a}{b} = \frac{3}{2}$	A1		OE
	(Squares are smooth \Rightarrow j component \Rightarrow) b = 3	B1		
	$a = \frac{9}{2}$	A1	4	AG
	$\left(v_B = \frac{3}{2}\mathbf{i} - 3\mathbf{j}\right)$			
(b)	(C.L.M. along the line of centres:)			
	$4(4) - 2(2) = 4(v_A) + 2(\frac{9}{2})$	M1		OE, No sign errors
	$v_A = \frac{3}{4}$	A1		
	(Restitution along the line of centres:)			
	$e = \frac{-\frac{3}{4} + \frac{9}{2}}{4+2}$ OE	M1 A1		M1 for correct terms, A0 for sign error
	$e = \frac{5}{8}$	A1	5	
(c)	(I = Change in momentum of B along the line of centres)			
	$= 2 \left(\frac{9}{2}i\right) - 2 \left(-2i\right)$	M1		Allow sign error and missing i
	= 13 i	A1		A0 for magnitude or –13i
	Ns or kg m s ⁻¹	B1	3	-
	Total		12	

Q	Solution	Marks	Total	Comments
7(a)(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1		Correct diagram with or without arrows. 40° marked correctly, PI by correct method.
	$\frac{\sin\theta}{240} = \frac{\sin 40}{200}$	M1		Correct sine rule allowing their angle opposite 200 in their diagram.
	$\theta = 50.47483^{\circ}$ or 50.5°	A1		AWRT 50.5°, PI by correct bearing
	Bearing of $v_A = 069.5^{\circ}$	A1	5	Allow 69.5°
(a)(ii)	$\frac{{}_{A}v_{H}}{\sin(180^{\circ}-40^{\circ}-50.5^{\circ})} =$			
	$\frac{200}{\sin 40^{\circ}}$ or $\frac{240}{\sin 50.5^{\circ}}$	M1		Allow using their angle from part (a)(i).
	$_{A}v_{H} = 311.13408$ or 311	A1F		FT their angle from part (a)(i)
	Time $=\frac{20}{311.13408}$	M1		PI by correct answer. Allow their ${}_{A}v_{H}$.
	(=0.0642809 hours) = 3.86 min	A1F	4	3sf required

Q	Solution	Marks	Total	Comments
7(b)	v_A v_H v_H 240 v_H Av_H B	M1 A1		Right-angled triangle with 240 and 150 marked. Correct orientation
	$\cos \alpha = \frac{150}{240}$ or $\sin \beta = \frac{150}{240}$ $\alpha = 51.3^{\circ}$ or $\beta = 38.7^{\circ}$	M1 A1		PI by correct bearing
	Bearing: 031.3°	A1	5	Allow 31.3°
	Total		14	
	TOTAL		75	

A-LEVEL Mathematics

Mechanics 3 – MM03 Mark scheme

6360 June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$x = 4\sqrt{3}t$	B1		
	$y = 4t - \frac{1}{2}gt^2$	B1		
	$t = \frac{x}{4\sqrt{3}}$			
	$y = 4 \times \frac{x}{4\sqrt{3}} - \frac{1}{2} (9.8) \left(\frac{x}{4\sqrt{3}}\right)^2$	M1		
	$y = \frac{x}{\sqrt{3}} - \frac{49x^2}{480}$	A1	4	AG
(b)	$y = \frac{4}{\sqrt{3}} - \frac{49(4)^2}{480}$	M1		PI by correct answer
	(The height is $0.676 + 0.3$) 0.98 m or 98 cm	A1	2	CAO
(c)	No air resistance or The ball does not spin or	B1	1	
			7	
	lotai		1	

Q	Solution	Mark	Total	Comment
2	$\begin{bmatrix} J \end{bmatrix} \equiv \mathrm{MLT}^{-1} \\ \begin{bmatrix} g \end{bmatrix} \equiv \mathrm{LT}^{-2} \end{bmatrix}$	B1		Dimensions of J and g , PI
	$MLT^{-1} = L^{\alpha} (ML^{2})^{\beta} (LT^{-2})^{\gamma}$ $MLT^{-1} = M^{\beta} L^{\alpha+2\beta+\gamma} T^{-2\gamma}$	M1 A1		FT from B1 PI
	$\beta = 1$ - 2 α 1	B1		
	$\alpha + 2\beta + \gamma = 1$	m1		Correctly solving their two equations involving three unknowns, PI by the answers
	$\gamma = \frac{1}{2}$ $\alpha = -\frac{3}{2}$	A1		
	Total		6	

(a) Only quoting the formula and substituting scores M1 A1.

Q	Solution	Mark	Total	Comment
3 (a)	$\mathbf{I} = \int_{0}^{3} (3t+1) \mathrm{d}t$	M1		Condone missing limits and missing dt
	$=\left[\frac{3}{2}t^2 + t\right]_0^3$	m1		For correct integration only
	$=\frac{33}{2}$ or 16.5 Ns	A1	3	Condone missing units
(b)	$\frac{33}{2} = 0.5v - 0.5(4)$	M1		Impulse/momentum equation for correct
	V = 57 ms	A1F	2	terms, FT on their impulse from part (a)
(c)	$\int_{0}^{T} (3t+1) dt = 0.5(20) - 0.5(4)$	M1		Correct impulse- momentum equation,
	$\left[\frac{3}{2}t^2 + t\right]_0^T = 0.5(20) - 0.5(4)$			condone missing limits
	$3T^2 + 2T - 16 = 0$	A1		Correct quadratic equation
	$(3T+8)(T-2) = 0$ or $T = \frac{-2 \pm \sqrt{(-2)^2 - 4(3)(-16)}}{2(3)}$	m1		Correct solution of their equation, PI
	T = 2 s	A1		Rejecting impossible time PI
	$\left(T = -\frac{6}{3} \text{ s impossible}\right)$		4	
	Total		9	

(a)
Alternative (non-calculus): Attempt at finding the area under force-time graph M1

$$= \frac{1+10}{2} \times 3 \quad \text{OE} \quad \text{A1}$$

$$= 33/2 \text{ or } 16.5 \text{ (NS)} \quad \text{A1}$$
(c)
Alternative:

$$a = \frac{3t+1}{0.5}$$

$$v = \int \frac{3t+1}{0.5} (dt) \quad \text{Attempt at integrating the acceleration} \quad \text{M1}$$

$$v = 3t^2 + 2t + 4$$

$$20 = 3T^2 + 2T + 4$$

$$3T^2 + 2T - 16 = 0 \quad \text{A1}, \text{ etc.}$$

Alternative (non-calculus): Attempt at finding the area under force-time graph for impulse $\frac{1 + (3T + 1)}{2} \times T = 0.5(20) - 0.5(4) \qquad \text{OE} \qquad \text{M1}$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Solution	Mark	Total	Comment
$\mathbf{v}_{B} = \frac{(21-j)-(-1+j)}{\frac{1}{2}} = 6\mathbf{i} - 4\mathbf{j}$ $\mathbf{v}_{B} = \frac{(21-j)-(-1+j)}{\frac{1}{2}} = 6\mathbf{i} - 4\mathbf{j}$ $A^{\nu}_{B} = (-4\mathbf{i} + 2\mathbf{j}) - (6\mathbf{i} - 4\mathbf{j})$ $A^{\nu}_{B} = -10\mathbf{i} + 6\mathbf{j}$ $\mathbf{r}_{0} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j})$ $\mathbf{r}_{0} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t$ $\mathbf{r}_{1} = (\mathbf{i} - 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t$ $\mathbf{r}_{1} = (2-10t)\mathbf{i} + (1+6t)\mathbf{j}$ \mathbf{k} $\mathbf{r}_{1} = (2-10t)\mathbf{i} + (1+6t)\mathbf{j}$ \mathbf{k}	4 (a)	$\boldsymbol{v}_A = \frac{(-\mathbf{i}+3\mathbf{j}) - (\mathbf{i}+2\mathbf{j})}{1} = -4\mathbf{i}+2\mathbf{j}$			M1 for a difference of two corresponding position
$ \begin{array}{c c} 1 & \frac{1}{2} & $		$v_{B} = \frac{(2i-j)-(-i+j)}{(-i+j)} = 6i-4j$	M1		vectors divided by $\frac{1}{2}$, A1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{1}{2}$	A1		for all correct
(b) $ \mathbf{r}_{0} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t $ $ \mathbf{r}_{0} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t $ $ \mathbf{r}_{0} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t $ $ \mathbf{r}_{1} = (2 - 10t)\mathbf{i} + (1 + 6t)\mathbf{j} $ $ \mathbf{r}_{1} = (2 - 10t)\mathbf{i} + (1 + 6t)\mathbf{j} $ $ \mathbf{r}_{1} = (2 - 10t)\mathbf{i} + (1 + 6t)^{2} $ $ \mathbf{r}_{1} = (2 - 10t)\mathbf{i} + (1 + 6t)^{2} $ $ \mathbf{r}_{1} = (2 - 10t)\mathbf{i} + (1 + 6t)^{2} $ $ \mathbf{r}_{2} = (2 - 10t)\mathbf{i} + (1 + 6t)^{2} $ $ \mathbf{r}_{2} = (2 - 10t)\mathbf{i} + (1 + 6t)^{2} $ $ \mathbf{r}_{2} = (2 - 10t)\mathbf{i} - (1 - 0)\mathbf{i} + 2(1 + 6t)\mathbf{i} = 0 $ $ \mathbf{r}_{2} = \frac{7}{68} \text{ or } 0.103 $ $ \mathbf{r}_{2} = \frac{7}{68} \text{ or } 0.103 $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{1}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{1} = \frac{7}{63} \mathbf{r}_{1}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{1}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{1} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{2} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{2}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3} = \frac{7}{63} \mathbf{r}_{3}^{2} + (1 + 6 \times 0.103)^{2} $ $ \mathbf{r}_{3} = \frac{7}{63} \mathbf$		$_{A}\boldsymbol{\nu}_{B} = \left(-4\mathbf{i}+2\mathbf{j}\right)-\left(6\mathbf{i}-4\mathbf{j}\right)$	m1		Accept any difference of
(b) $\mathbf{r}_{0} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j})$ $\mathbf{r} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t$ $\mathbf{r} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t$ $\mathbf{r} = (2 - 10t)\mathbf{i} + (1 + 6t)\mathbf{j}$ (c) $AB^{2} = (2 - 10t)^{2} + (1 + 6t)^{2}$ $A \text{ and } B \text{ are closest when } \frac{dAB^{2}}{dt} \left(\text{ or } \frac{dAB}{dt} \right) = 0$ $B1$ $\frac{dAB^{2}}{dt} = 2(2 - 10t)(-10) + 2(1 + 6t)6 = 0$ $t = \frac{7}{68} \text{ or } 0.103$ (d) $AB = \sqrt{(2 - 10\times0.103)^{2} + (1 + 6\times0.103)^{2}}$ or $\sqrt{\left(\frac{33}{34}\right)^{2} + \left(\frac{55}{34}\right)^{2}}$ (d) $AB = \sqrt{(2 - 10\times0.103)^{2} + (1 + 6\times0.103)^{2}}$ (e) A1 $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$		$_A \boldsymbol{v}_B = -10\mathbf{i} + 6\mathbf{j}$	۸1	л	their velocities
(b) $\mathbf{r} = (\mathbf{i}+2\mathbf{j})-(-\mathbf{i}+\mathbf{j})+(-10\mathbf{i}+6\mathbf{j})t$ $\mathbf{r} = (2-10r)\mathbf{i}+(\mathbf{i}+6r)\mathbf{j}$ (c) $AB^{2} = (2-10r)^{2}+(\mathbf{i}+6r)^{2}$ $A \text{ and } B \text{ are closest when } \frac{dAB^{2}}{dt}\left(\text{ or } \frac{dAB}{dt}\right)=0$ $B1$ $\frac{dAB^{2}}{dt} = 2(2-10t)(-10)+2(\mathbf{i}+6r)6=0$ $\frac{dAB^{2}}{dt} = 2(2-10t)(-10)+2(\mathbf{i}+6r)6=0$ $A1$ $A1$ b $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	(1)	$\mathbf{r_0} = (\mathbf{i} + 2\mathbf{j}) - (\mathbf{-i} + \mathbf{j})$	AI	4	NMS scores 0/4
$(c) AB^{2} = (2-10t)^{2} + (1+6t)^{2}$ $A = \sqrt{(2-10t)^{2} + (1+6t)^{2}} + (1+6t)^{2} + (1+6t$	(D)	$\mathbf{r} = (\mathbf{i} + 2\mathbf{j}) - (-\mathbf{i} + \mathbf{j}) + (-10\mathbf{i} + 6\mathbf{j})t$	B1		
(c) $AB^{2} = (2-10t)^{2} + (1+6t)^{2}$ $AB^{2} = (2-10t)^{2} + (1+6t)^{2}$ $A = AB^{2} = (2-10t)^{2} + (1+6t)^{2}$ $A = AB^{2} = (2-10t)^{2} + (1+6t)^{2}$ $A = \sqrt{(2-10t)^{2} + (1+6t)^{2}}$ $A = \sqrt{(2-10t)^{2} $			M1		M1 for using $\mathbf{r} = \mathbf{r}_0 + {}_A \boldsymbol{v}_B \boldsymbol{t}$ with their \boldsymbol{v}
(c) $AB^2 = (2-10t)^2 + (1+6t)^2$ $A \text{ and } B \text{ are closest when } \frac{dAB^2}{dt} \left(\text{ or } \frac{dAB}{dt} \right) = 0$ $\frac{dAB^2}{dt} = 2(2-10t)(-10) + 2(1+6t)6 = 0$ $t = \frac{7}{68} \text{ or } 0.103$ (d) $AB = \sqrt{(2-10\times0.103)^2 + (1+6\times0.103)^2}$ $\text{or } \sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2}$ M1 M1 B1 P1 Condone one sign error or one coefficient error A1 A1 5 M1 B1 P1 Condone one sign error or one coefficient error A1 A1 5 M1 Dependent on M1 and m1 in part (c) A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		$\mathbf{r} = (2 - 10t)\mathbf{i} + (1 + 6t)\mathbf{j}$	A1	3	AG
$(d) \qquad A \text{ and } B \text{ are closest when } \frac{dAB^2}{dt} \left(\text{ or } \frac{dAB}{dt} \right) = 0 \qquad B1 \qquad P1 \qquad Condone \text{ one sign error or one coefficient error All correct} \\ t = \frac{7}{68} \text{ or } 0.103 \qquad A1 \qquad 5 \qquad A1 \qquad condone \text{ one sign error or one coefficient error All correct} \\ A1 \qquad A1$	(c)	$AB^{2} = (2 - 10t)^{2} + (1 + 6t)^{2}$	M1		Or $AB = \sqrt{(2-10t)^2 + (1+6t)^2}$
$\frac{dAB^2}{dt} = 2(2-10t)(-10) + 2(1+6t)6 = 0$ $t = \frac{7}{68} \text{ or } 0.103$ $AB = \sqrt{(2-10\times0.103)^2 + (1+6\times0.103)^2}$ $m1$ $AB = \sqrt{(2-10\times0.103)^2 + (1+6\times0.103)^2}$ $m1$ $m1$ $Dependent on M1 and m1 in part (c)$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$		A and B are closest when $\frac{dAB^2}{dt} \left(\text{ or } \frac{dAB}{dt} \right) = 0$	B1		Ы
(d) $t = \frac{7}{68} \text{ or } 0.103$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$		$\frac{\mathrm{d}AB^2}{\mathrm{d}t} = 2(2-10t)(-10) + 2(1+6t)6 = 0$	m1		Condone one sign error or
(d) $t = \frac{7}{68} \text{ or } 0.103$ $AI = 5$ $AI = 5$ $AI = 5$ $AI = 35.1. required if decimal. Accept equivalen fractions$ $Dependent on M1 and m1 in part (c)$ $AI = 5$ $AI = 5$ $AI = 5$ $AI = 5$ $Dependent on M1 and m1$ $I = 5$ $AI = 5$		7	A1		All correct
(d) $AB = \sqrt{(2 - 10 \times 0.103)^2 + (1 + 6 \times 0.103)^2}$ or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2}$ m1 fractions Dependent on M1 and m1 in part (c) A1		$t = \frac{7}{68}$ or 0.103	AI	5	At least 3 s.f. required if decimal. Accept equivalent
or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2}$ (1) or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2$ (1) or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2}$ (1) or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2$ (1) or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2}$ (1) or $\sqrt{\left(\frac{33}{34}\right)^2 +$	(d)	$AB = \sqrt{(2 - 10 \times 0.103)^2 + (1 + 6 \times 0.103)^2}$			fractions
		or $\sqrt{\left(\frac{33}{34}\right)^2 + \left(\frac{55}{34}\right)^2}$	m1		Dependent on M1 and m1 in part (c)
AB = 1.89 or 1.886 At least 3 s.f. required		<i>AB</i> = 1.89 or 1.886	A1	2	At least 3 s.f. required
Total 14		Total		14	

MARK SCHEME – A-LEVEL MATHEMATICS – MM03 – JUNE 14

4 (c) Alternative 1:	
$AB^{2} = (2 - 10t)^{2} + (1 + 6t)^{2}$	M1
$AB^2 = 4 - 40t + 100t^2 + 1 + 12t$	$+36t^2$ A1
A and B are closest when $\frac{\mathrm{d}AB^2}{\mathrm{d}t}$	$-\left(\text{or }\frac{\mathrm{d}AB}{\mathrm{d}t}\right) = 0 \qquad B1$
-40 + 200t + 12 + 72t = 0	m1
$t = \frac{7}{68}$ or 0.103	A1
4 (c) Alternative 2:	
$AB^{2} = (2-10t)^{2} + (1+6t)^{2}$ $AB^{2} = 4 - 40t + 100t^{2} + 1 + 12t + 36t^{2}$ $AB^{2} = 136t^{2} - 28t + 5$	M1 A1
$AB^{2} = 136 \left(\left(t - \frac{7}{68} \right)^{2} + \dots \right)$	m1 A1 m1 for attempt at completing the square of their quadratic
$t = \frac{7}{68}$ or 0.103	A1
4(c) Alternative 3 (Not in the specifi $[(2-10t)\mathbf{i} + (1+6t)\mathbf{j}] \cdot [-10\mathbf{i} + 6\mathbf{j}] (= 0)$ -20+100t+6+36t (= 0) -20+100t+6+36t = 0 $t = \frac{7}{68}$ or 0.103	<i>cation):</i> M1 for the scalar product of the r with <u>their</u> $_A v_B$ A1 for all correct A1 m1 for correctly solving <u>their</u> equation A1

Q	Solution	Mark	Total	Comment
5 (a)	'No change' with an attempt to explain	B1		
(b)	Explanation referring to smoothness or lack of friction parallel to the plane $\sqrt{2gh}$ $\sqrt{2gh} \sin \vartheta$ $e\sqrt{2gh} \cos \vartheta$	B1	2	
	$\frac{\sqrt{2gh}\cos\vartheta}{Before}$			
	Speed before impact = $\sqrt{2gh}$ PI	M1)	
		A1		Allow ± expressions
	Parrallel component after impact = $\sqrt{2gh} \sin \vartheta$	A1	J	
	Perpendicular component after impact = $e\sqrt{2gh}\cos\theta$		3	
(c)	(At B,) $0 = e\sqrt{2gh}\cos\theta^* t - \frac{1}{2}g\cos\theta t^2$	M1 A1		Allow M1 for using $\sin \vartheta$ instead of $\cos \vartheta^*$ and +
		A1		instead of –
	$t = \frac{2e\sqrt{2gh}\cos\theta}{g\cos\theta} \text{or} \frac{2e\sqrt{2gh}}{g}$ $r = \sqrt{2gh}\sin\theta^* t + \frac{1}{g}\sin\theta t^2$	M1 A1		Allow M1 for using $\cos \vartheta$ instead of
	$AB = \frac{\sqrt{2gh}\sin\theta 2e\sqrt{2gh}}{4B} + \frac{g\sin\theta 4e^2 2gh}{2gh}$	m1		$\sin \vartheta^*$ and – instead of + Elimination of <i>t</i> . OE
	$g = \frac{2g^2}{2g^2}$ $AB = \frac{4ghe\sin\theta}{g} + \frac{8g^2he^2\sin\theta}{2g^2}$ $AB = 4he\sin\theta + 4he^2\sin\theta$ $AB = 4he(e+1)\sin\theta$	A1	7	AG, must be convinced
	Total		12	

(a) The minimum statement for 2 marks is: 'No friction, so no change to velocity parallel to the plane' Allow numerical value of 9.8 for g in part (c), but deduct one A1 mark in part (b) if they have used numerical value.

Q	Solution	Mark	Total	Comment
6 (a)	Conservation of linear momentum along the			
	line of centres:			
	$2 \times 3\cos 60^\circ - 4 \times 5\cos 60^\circ = 2 \times v$	M1		Condone sign errors
	v = -3.5	A1		Correct with 2v or -2v
		AI		Or $\frac{7}{2}$, accept 3.5 from
				consistent working
	Velocity of $A \perp$ to line of centres : $3 \sin 60^{\circ}$	B1		Possibly seen on a diagram
	$V = \sqrt{(3.5)^2 + (3\sin 60^\circ)^2}$	M1		FT their v from above
	$V = 4.36$ or $\sqrt{19}$ ms ⁻¹	A1	6	AWRT 4.36, condone
(b)				units
X-7	$\tan^{-1} 3\sin 60^{\circ}$ *			For compation FT
	3.5	M1		their w from part (a)
	= 37°			their v from part (a)
(-)		A1	2	CAO
(C)	3.5			
	$e = \frac{1}{3\cos 60^\circ + 5\cos 60^\circ}$	M1		For correct expression, FT
	7			their v from part (a)
	$e = 0.875$ or $\frac{7}{8}$			
		A1	2	CAO
(d)		М1		
(0)	$I = 4 \times 5 \cos 60 - 4 \times 0$ or $2 \times 3 \cos 60 - 2 \times 3.5$	IVII		OE, condone the missing
	1 10 No			2ero term , FI
	I = 10 INS	A1		CAO, condone missing
			2	units
	Total		12	

(b) * or $\sin^{-1} \frac{3\sin 60^{\circ}}{4.36}$ or $\cos^{-1} \frac{3.5}{4.36}$

Q	Solution	Mark	Total	Comment
7	J = 2m(2u) - 2m(0)	M1		
(a)	=4mu	A1	2	A0 for sign error or $-4mu$ as answer
(b)	$2m(2u) = 2mv_A + mv_B$ $4u = 2v_A + v_B$	M1		CLM
	$\frac{v_B - v_A}{2u - 0} = \frac{2}{3}$ $4u = 3v_B - 3v_A$	M1 A1		Restitution, condone sign error All correct
	$v_A = \frac{8}{9}u$	A1		
	$v_B = \frac{20}{9}u$	A1	5	
(c)	$t = \frac{s-r}{\frac{20u}{9}} \text{or} \frac{9(s-r)}{20u}$	M1		$(s-r)$ divided by their v_B from (b)
	Distance travelled by A is $\frac{8u}{9} \times \frac{9(s-r)}{20u}$ 2(s-r)	m1 A1		Their $v_A \times$ their time from the line above
	$-\frac{5}{5}$			0E
	$s + 2r - \frac{2(s-r)}{5} = \frac{3s+12r}{5}$	A1	4	AG
(d)	$w_B = \frac{20u}{9} \times \frac{2}{5}$	M1		Their v_B from (b) $\times \frac{2}{5}$
	$=\frac{8}{9}u$	A1		
	A and B have the same speed \Rightarrow The distance between them will be halved to			Evaluation not
	$\frac{1}{2}\left(\frac{3s+12r}{5}-3r\right)$ or $\frac{3s-3r}{10}$	M1		needed
	\therefore The required distance is			
	$\frac{1}{2} \left(\frac{3s + 12r}{5} - 3r \right) + r = \frac{3s + 7r}{10}$	A1	4	Simplification not required
	Total		15	

(a) Condone omission of -2m(0).

A-level Mathematics

MM03 Mark scheme

6360 June 2015

Version 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Question	Solution	Marks	Total	Comments
1	$[F] = MLT^{-2}$	B1		B1: Correct dimensions of
	$MLT^{-2} = \left(LT^{-1}\right)^{\alpha} \left(L^{2}\right)^{\beta} \left(ML^{-3}\right)^{\gamma}$	M1		<i>F</i> M1: Substituting the dimensions of the quantities into the given equation to
	$=M^{\gamma}L^{\alpha+2\beta-3\gamma}T^{-\alpha}$	m1		m1: Collecting indices on
				RHS. Could be implied by later work.
	$ \begin{array}{l} \gamma = 1 \\ \alpha + 2\beta - 3\gamma = 1 \\ -\alpha = -2 \end{array} \right\} $	A1 m1	6	A1: $\gamma = 1$ m1: Two correct equations for α and β .
	lpha=2 , $eta=1$	A1		A1: Correct values for α and β . Condone use of units instead of dimensions.
	Total		6	

Question	Solution	Marks	Total	Comments
2 (a)	$x = u \cos \alpha t$	M1		M1: Correct expression for
	r	A1		horizontal displacement.
	$t = \frac{x}{\mu \cos \alpha}$			t.
	1			
	$y = u \sin \alpha i - \frac{1}{2}gi$	M1		M1: Correct expression for
	$v = u \sin \alpha \times \frac{x}{x} - \frac{1}{2} \left(9.8\right) \left(\frac{x}{x}\right)^2$			vertical displacement.
$(\mathbf{h})(\mathbf{i})$	$\frac{y - u \sin \alpha}{u \cos \alpha} = 2 \frac{(0.5)}{u \cos \alpha}$			Allow sign errors.
(0)(1)	$4.0x^2$	mı		m1: Elimination of <i>t</i> from
	$y = x \tan \alpha - \frac{4.9x}{u^2 \cos^2 \alpha}$ AG			equation for vertical
	$\frac{4.9s^2}{4.9s^2}$	Δ1	5	displacement.
	$-s = s \tan 55^{\circ} - \frac{1}{21^2 \cos^2 55^{\circ}}$	111	5	correct working.
(ii)	$s = \frac{(1 + \tan 55^{\circ})21^2 \cos^2 55^{\circ}}{10^{\circ}}$			Penalise use of $g = 9.81$.
	4.9	M1		M1: Substituting $\pm s$ for x
	<i>S</i> = <i>7</i> 1.9			and y.
		m1		m1. Making s the subject of
	$\dot{x} = 21\cos 55^\circ = 12.045$			their equation.
	71.895	A1	3	A1: AWRT 71.9 Condena use of $a = 0.81$
	$y = 21\sin 55 - 9.8 \times \frac{1}{21\cos 55^{\circ}}$			which gives 71.8 .
	or $\dot{y}^2 = (21\sin 55^\circ)^2 - 2(9.8)(-71.895)$	D 1		
		BI		B1: Correct expression or value for horizontal
	$\dot{v} = -41.292$			component of velocity.
		M1		M1. Correct expression or
	41 202	1711		value for vertical
	$\tan^{-1} \frac{-41.292}{21\cos 55^{\circ}}$		5	component of velocity, with
	$= -74^{\circ}$			their answer to (b)(1).
	or 74°	A1		A1: Correct expression or
		m1		value. m1. Use of tan with their
				velocity components.
		A1		A1: Correct angle to nearest
	Total		13	degree. CAU.
L		1		1

(b)(ii)	Alternative:			
	$y = x \tan \alpha - \frac{4.9x^2}{u^2 \cos^2 \alpha}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \alpha - \frac{2(4.9)x}{u^2 \cos^2 \alpha}$	B1		B1: Correct derivative.
	$= \tan 55^{\circ} - \frac{2(4.9)(71.895)}{21^2 \times \cos^2 55^{\circ}}$	M1		M1: Substituting values.
	= -3.428	A1		A1: Correct value of the derivative
	The angle = $\tan^{-1}(-3.428)$	m1		m1: Use of tan to find the
				angle.
	$=-74^{\circ}$ or 74°	A1	5	A1: Correct angle to nearest
				degree. CAO.

Question	Solution	Marks	Total	Comments
3 (a)	Solution	ivia 183	Total	Comments
5 (a)	I 2.5 kg m s ⁻¹	B1		B1: Momentum – Impulse triangle with right angle. Can be implied by a correct equation.
(b)	$2.5^2 = 1.5^2 + I^2$	M1	3	M1: Use of Pythagoras to obtain a correct equation. OE for example $5^2 = 3^2 + \left(\frac{I}{0.5}\right)^2$
	I = 2 N s	A1		A1: Correct impulse.
	After the impact:	B1	4	B1: Sight of perpendicular component as 4 <i>e</i> . Could be implied by a correct equation.
	$3\sqrt{2} \text{ m s}^{-1}$ $4e$ 3 m s^{-1}	B1		B1: Correct velocity diagram, PI by a correct equation
	$(3\sqrt{2})^2 = (4e)^2 + 3^2$	M1		M1: Use of Pythagoras to obtain a correct equation. A1: Correct coefficient of
	$e = \frac{3}{4}$ or 0.75	A1		restitution.
	Total		7	

(a)	Alternative: $I\mathbf{j} = 0.5(5\cos\alpha\mathbf{i} + 5\sin\alpha\mathbf{j}) - 0.5(3\mathbf{i})$	B1		B1: Correct vector equation.
	$2.5\cos\alpha - 1.5 = 0$ $\cos\alpha = 0.6$	M1		M1: Correct value for $\sin \alpha$.
	$ \sin \alpha = 0.8 I = 0.5(5 \times 0.8) $	A1	3	A1: Correct impulse.
	I=2			
(b)	Alternative: $3 = 3\sqrt{2} \sin \beta$	B1 B1		B1: Correct equation for motion parallel t
	$\cos\beta = \frac{1}{\sqrt{2}}$	M1		B1: Value for $\cos\beta$ or $\beta = 45^{\circ}$.
	$3\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)$	A1	4	M1: Correct expression for <i>e</i> or correct ec
	$e = \frac{2}{0.5}$			A1:Correct impulse.
	$e = \frac{3}{4}$ or 0.75			

Question	Solution	Marks	Total	Comments
4 (a) (i)	$mu = mv_1 + 2mv_2$ OE	M1 A1		M1: Equation with three
				momentum terms.
	$u = v_1 + 2v_2$			A1: Correct equation.
	$\frac{2}{2}$ $\mu = \nu $ ν OF	M1 A1		M1. Newton's Law of
(ii)	$3^{u-v_2-v_1}$ OL			Restitution. (Allow sign
	$3v_{1} = \frac{5}{2}u$			errors.)
	3			A1: Correct equation.
(1-)	$v_{2} = \frac{5}{-u}$ AG	A 1		Al. Competence lof D
(D)	9	AI	0	from correct working
	$v_1 = u - \frac{10}{9}u$			nom concet working.
	$v_1 = -\frac{1}{9}u$			
	The speed of A is $\frac{1}{9}u$	A1		A1: Correct speed of <i>A</i> . Do not accept negative speed
	$\frac{5}{9}u$ 0			
	(2m) e $(6m)$	N/1		
		A1		M1: Equation with three
	$V_3 \qquad V_4$			momentum terms.
	$2m\left(\frac{5}{9}u\right) = -2mv_3 + 6mv_4 \qquad \text{OE}$			A1: Correct equation
		M1		
	$\frac{10}{10}\mu = -2\nu + 6\nu$	A1		
	9 4 213 1014			M1: Newton's Law of Restitution (Allow sign
	$e\left(\frac{5}{-u}\right) = v_3 + v_4$ OE			errors.)
	$\left(9\right)$			A1: Correct equation
(c)	$10_{y=2y=6}(5_{y=2}, y)$			
	$\frac{-9}{9}u = -2v_3 + 0\left(\frac{-ue - v_3}{9}\right)$	m1		
	$8v = \frac{10}{10}u_{\theta} = \frac{10}{10}u_{\theta}$	A1F	8	
	$\delta v_3 = \frac{1}{3}ue = \frac{1}{9}u$			m1: Solving equations to find the speed of <i>R</i> after the
	$v_2 = \frac{5}{2}ue - \frac{5}{2}u$ OE			second collision.
	12 36			A1F: Correct speed of B
				after the second collision.
			2	r 1 men equations

Q	Solution	Marks	Total	Comments
×	second collision \Rightarrow $\frac{5}{12}ue - \frac{5}{36}u > \frac{1}{9}u$ $\frac{5}{12}ue > \frac{9}{36}u$ $e > \frac{3}{5}$ or 0.6	M1 A1F	Total	M1: For the inequality $v_3 > v_1$ A1F: Correct value of <i>k</i> . FT their $v_3 > v_1$. The value of <i>k</i> must be less than 1 and greater than 0 to score A1F
	Equal radii \Rightarrow Velocities are parallel to the line of centre	B1 B1		B1: Comment about equal radii or same size.B1: Comment about the line of centres.
	Total		16	

-			-	
	(b) Alternative:			
	$\frac{5}{9}u = 0$			
	$\begin{array}{c} 2m \\ \hline \\ v_3 \end{array} \qquad \begin{array}{c} c \\ \hline \\ 6m \\ v_4 \end{array}$			
	$2m\left(\frac{5}{9}u\right) = 2mv_3 + 6mv_4$ $10u_4 = 2u_4 + 6u_4$	M1A1		M1: Equation with three momentum terms. A1: Correct equation.
	$\frac{-9}{9}u = 2v_3 + 6v_4$ $e\left(\frac{5}{9}u\right) = v_4 - v_3$ $\frac{10}{9}u = 2v_4 + 6\left(\frac{5}{9}ue + v_4\right)$	M1A1		M1: Newton's Law of Restitution. (Allow sign errors.) A1: Correct equation.
	9 $u^{-2v_3 + 6}(9^{ue + v_3})$ $8v_3 = \frac{10}{9}u - \frac{10}{3}ue$ $v_3 = \frac{5}{36}u - \frac{5}{12}ue$ OE	m1A1 F		m1: Solving equations to find the velocity of B after the second collision. A1F: Correct velocity of B after the second collision. FT their equations.
	second collision \Rightarrow $\frac{5}{36}u - \frac{5}{12}ue < -\frac{1}{9}u$	M1		M1: For the inequality $v_3 < v_1$
	$\frac{5}{12}ue > \frac{9}{36}u$ $e > \frac{3}{5} \text{ or } 0.6$	A1F		A1F: Correct value of <i>k</i> . The value of <i>k</i> must be less than 1 and greater than 0 to score A1F

	~			~
Question	Solution	Mark	ks Total	Comments
5	$\cos \alpha = \frac{3}{5} \text{ or } 0.6 \text{ and } \cos \beta = \frac{5}{13} \text{ or } 0.384$	⁴⁶ B1		B1: Correct values for $\cos \alpha$ and $\cos \beta$.
	$2(4\cos\alpha)+1(2.6\cos\beta)=2v_A+1v_B$	M1A	.1	M1: Four term momentum equation
	$2(2.4) + 1(1) = 2v_A + 1v_B$			along the line of centres.
				May be in terms of α and β .
	$\frac{4}{7}(4\cos\alpha - 2.6\cos\beta) = v_B - v_A$	M1 A	A1	M1: Newton's Law of Restitution. (Allow
	$\frac{4}{7}(2.4-1) = v_B - v_A$			A1: Correct equation.
	$\begin{cases} 5.8 = 2v_A + v_B \\ 0.8 \end{cases}$			
	$(0.8 = v_B - v_A)$			
	$v_A = \frac{5}{3} \text{ms}^{-1}$	A1	11	A1: Correct velocity of A. AWRT 1.67
	$v_B = \frac{37}{15} \text{ ms}^{-1}$	A1		A1: Correct velocity of <i>B</i> . AWRT 2.47
	V	m1		m1: Finding speed of
	$V_A = \sqrt{\left(\frac{1}{3}\right)^2 + (4\sin\alpha)^2}$			A with their v_A . May
	$V_A = \sqrt{\left(\frac{5}{3}\right)^2 + (3.2)^2} = 3.61 \text{ ms}^{-1}$	A1		be in terms of α and β . A1: Correct speed. AWRT 3.61
	$V_{B} = \sqrt{\left(\frac{37}{15}\right)^{2} + (2.6\sin\beta)^{2}}$	m1		m1: Finding speed of <i>B</i> with their v_{B} . May
	$V_B = \sqrt{\left(\frac{37}{15}\right)^2 + \left(2.4\right)^2} = 3.44 \text{ ms}^{-1}$	A1		be in terms of α and β . A1: Correct speed. AWRT 3.44
	<u> </u>	[otal	11	
		otai	11	

6 (a)(i)				
	35 α β 357 β 30° -50	B1 B1		 B1: For one velocity triangle, could be implied by later working. B1: For the other velocity triangle drawn together or separately, could be implied by the correct 2nd angle
(ii)	$\frac{\sin \alpha}{50} = \frac{\sin 30^\circ}{35} \text{ or } \frac{\sin \beta}{50} = \frac{\sin 30^\circ}{35}$	M1	5	M1: Correct use of sine rule to find α or β .
	$ \begin{array}{c} \alpha = 45.58^{\circ} \\ \beta = 134.42^{\circ} \end{array} $	A1		A1: Either angle correct.
	Bearings: $\begin{array}{c} 346^{\circ} \\ 074^{\circ} \end{array}$	A1		A1: Two correct bearings. Accept 74°.
	Angle for shorter time : 45.58°	B1	5	B1: Selecting the smaller of their two angles from part
	$\frac{{}_{F}v_{S}}{\sin 104.42^{\circ}} = \frac{35}{\sin 30^{\circ}}$	M1		(a). M1: Using the sine rule to find the speed of the frigate
(b)	$_{F}v_{S} = 67.79 \text{ km h}^{-1}$	A1		their angle. A1: Correct speed.
	$t = \frac{8}{67.79}$	m1		m1: Using distance over
	= 0.118 h or 7.08 min	AIF		speed. A1F: Correct time. FT their speed. Full marks can be scored by using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.

v_F v_S N v_{-50}	B1	3	B1: Correct right angled velocity triangle. Could be implied by later working.
$v_F = 50 \sin 30^\circ$ OE $v_F = 25 \text{ kmh}^{-1}$	M1 A1		M1: Use of trigonometry to find speed. A1: Correct speed. CAO.
Total		13	

(a)(ii)	Alternative: Angle for shorter time : 45.58°	B1		B1: Selecting the smaller of their two angles from part
	$t(50\cos 30^\circ + 35\cos 45.58^\circ) = 8$	M1A1		(a). M1: For 50 and 20° + 25 and 46°
	$\left(t = \frac{8}{50\cos 30^\circ + 35\cos 45.58^\circ}\right)$	m1		A1: Correct expression. m1: Using distance over speed.
	<i>t</i> = 0.118 h or 7.08 min	A1F	5	A1F: Correct time. FT their angle. Full marks can be scored by using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.
	Alternative: Angle for shorter time : 45.58°	B1		B1: Selecting the smaller of
	d 8			their two angles from part (a).
	$\frac{1}{\sin 30^{\circ}} = \frac{1}{\sin 104.42^{\circ}}$	M1		M1: Using the sine rule to find the distance travelled
	d = 4.130 km	A1		by the frigate with their angle.
	$\left(t = \frac{4.130}{35}\right)$	m1		A1: Correct distance m1: Using distance over
	t = 0.118 h or 7.08 min	A1F	5	A1: Correct time FT their
				angle. Full marks can be scored b using both angles and choosing the shorter time. If both times calculated and none selected do not award final A1 mark.

Question	Solution	Marks	Total	Comments
(b)	$y = u \sin(\alpha - \vartheta)t - \frac{1}{2}g \cos \vartheta t^{2}$ $0 = u \sin(\alpha - \vartheta)t - \frac{1}{2}g \cos \vartheta t^{2}$ $t = \frac{2u \sin(\alpha - \vartheta)}{g \cos \vartheta}$	M1 A1 m1 A1	4	M1: Expression for perpendicular height of particle above the plane. Accept wrong angles for M1 but not sin and cos in wrong places. A1: Correct expression with y = 0. m1: Solving for non-zero <i>t</i> .
	$u\sin\alpha - gt = 0$ $t = \frac{u\sin\alpha}{g}$	M1		A1: Correct <i>t</i>.M1: Velocity equation to find time to <i>A</i>.
	$\frac{u\sin\alpha}{g} = \frac{2u\sin(\alpha - \vartheta)}{g\cos\vartheta}$	A1		A1: Correct time.
	$\sin \alpha \cos \vartheta = 2\sin(\alpha - \vartheta)$ $\sin \alpha \cos \vartheta = 2\sin \alpha \cos \vartheta - 2\cos \alpha \sin \vartheta$	m1		m1: Forming an equation using their time from part (a) and this time.
	$ \sin \alpha \cos \vartheta = 2\cos \alpha \sin \vartheta $ $ \frac{\sin \alpha}{\cos \alpha} = 2 \frac{\sin \vartheta}{\cos \vartheta} $ $ \tan \alpha = 2 \tan \vartheta $	M1	5	M1: Use of identity to eliminate compound expressions. It is not enough to only expand $sin(\alpha - \theta)$ in the expression in part (a) without anything else.
		A1		A1: Seeing required expression derived with $k = 2$.
	Total		9	
	TOTAL		75	

(h)	Alternative: Taking r and v axes parallel and			
	perpendicular to the plane respectively and			
	using $\tan \theta = \frac{-\dot{y}}{\dot{x}}$ or equivalent,			
	$\left(u\cos(\alpha-\theta) - g\frac{2u\sin(\alpha-\theta)}{g\cos\theta}\sin\theta\right)\tan\theta = -u\sin(\alpha-\theta) + \frac{g2u\sin(\alpha-\theta)}{g\cos\theta}\cos\theta$	M1 A1		M1: Correct terms, allow sign errors. A1: All correct
	$\cos(\alpha - \theta)\tan\theta = \sin(\alpha - \theta)(2\tan^2\theta + 1)$			
	$(\cos\alpha\cos\theta + \sin\alpha\sin\theta)\tan\theta = (\sin\alpha\cos\theta - \sin\theta\cos\alpha)(2\tan^2\theta + 1)$	M1		M1: Use of identities to eliminate compound expressions.
	$\tan \alpha \tan^2 \theta + \tan \alpha - 2 \tan^3 \theta - 2 \tan \theta = 0$			
	$\tan \alpha \left(1 + \tan^2 \theta\right) = 2 \tan \theta \left(1 + \tan^2 \theta\right)$	m1		m1: Rearranging to the required form.
	$\tan \alpha = 2 \tan \theta$	A1		A1: Seeing required expression derived with $k = 2$.
			5	